Supporting Information

Controllable synthesis of porous TiO₂ with hierachical nanostructure for efficient photocatalytic hydrogen evolution

Lin Wang, Zhongyuan Nie, Chuanbao Cao*, Muwei Ji, Li Zhou and Xiao

Feng

Research Center of Materials Science, Beijing Institute of Technology,

Beijing 100081, China, E-mail: cbcao@bit.edu.cn

Material	Cocatalyst	Light source ^a	Reaction	H ₂ Activity	Reference
			solution ^b	(µmol g ⁻¹ h ⁻¹)	(year)
TiO ₂	Pt	UV-Vis (H) 150 W	TEOA	3667	1 (2012)
TiO ₂	Au	UV-Vis (Hg) 300 W	Methanol	2785	2 (2005)
TiO ₂	Rh	Hg 500 W	water vapor	449	3 (1985)
TiO ₂	CuO	UV-Vis (Hg) 400 W	Methanol	18 500	4 (2009)
TiO ₂	Cu(OH) ₂	UV-Vis (Hg) 400 W	Methanol	14 940	5 (2013)
TiO ₂	Ni(OH)2	365 nm (LED) 3 W	Methanol	3056	6 (2011)
TiO ₂	C ₆₀ –CNT	UV-Vis (Xe) 300 W	TEOA	6510	7 (2013)
TiO ₂	MoS ₂ –RGO	UV-Vis (Xe) 350 W	Ethanol	2066	8 (2012)
TiO ₂	NiO	UV-Vis (Hg) 300 W	Methanol	813	9 (2005)

Table S1. Photocatalytic H₂ evolution

^a H: halogen lamp, Xe: xenon lamp, Hg: mercury lamp.

^b TEOA: triethanolamine.

Table S2. Compositions of the solutions for hydrothermal reaction of porous ${\rm TiO}_2$ hierarchical

Sample	TTIP (g)	Volume ratio of HCl:EG	CTAB (g)	H ₂ O (mL)	Average diameters of the constituent units (nm)
TiO ₂ -15	0.6	7:5	0.5	2.5	15
TiO ₂ -10	0.6	7:21	0.5	2.5	10
TiO ₂ -5	0.6	7:35	0.5	2.5	5

microspheres synthesized under different conditions

Table S3. Surface analysis data

Sample	Specific surface area (m ² g ⁻¹) ^a	Average pore size (nm) ^b	Pore volume(cm ³ g ⁻¹)
TiO ₂ -15	72.317	5.0	0.087
TiO ₂ -10	111.147	4.9	0.122
TiO ₂ -5	216.607	3.8	0.241

^a Specific surface area was calculated from the linear part of BET plot.

^b Average pore diameter was estimated.

Table S4. Photocatalytic activities of the samples

Samples	H ₂ activity	QE
	(mmol g ⁻¹ h ⁻¹)	(%)
P25	18.94	14.59
TiO ₂ -15	12.38	9.59
TiO ₂ -10	14.33	11.05
TiO ₂ -5	23.74	18.34

Figure S1. XPS spectra of TiO₂-15, TiO₂-10 and TiO₂-5; (a) showing the three characteristic peaks of Ti, O and C

of them, (b) and (c) showing the two characteristic peaks of Ti and O.

Figure S2. The photograph of all the products: (a) TiO_2 -15, (b) TiO_2 -10; (c) TiO_2 -5.

Figure S3. Photocatalytic degradation of MO under UV-visible light for 0.08 g, (a) TiO₂-15, (b) TiO₂-10, (c)

TiO₂-5 as photocatalyst. After 90 min 18.5% of the MO has been degraded for TiO₂-15, after 15 min 80% of the

MO has been degraded for TiO₂-10, but only after 5 min 80% of the MO has been degraded for TiO₂-5.

Figure S4. Cycling runs in photocatalytic degradation of MO in the presence of TiO₂-5 under UV-visible light.

Figure S5. (a) and (b) Photocatalytic degradation of phenol under UV-visible light of P25, TiO_2 -15, TiO_2 -10 and TiO_2 -5 for 0.08 g, respectively: (a) C/C₀ of them and without photocatalyst; (b) First-order rate constant k (min⁻¹) of them.

Figure S6. The UV-Vis spectra of 300 W Xenon lamp.

Figure S7. Photacatalytic generation of H_2 under UV-visible light irradiation for them: (a) Time evolution of photocatalytic generation of H_2 without Pt for the samples and without catalyst; (b) Comparison of H_2 evolution activities of them.

References

- P. D. Tran, L. F. Xi, S. K. Batabyal, L. H. Wong, J. Barber and J. S. C. Loo, Enhancing the photocatalytic efficiency of TiO₂ nanopowders for H₂ production by using non-noble transition metal co-catalysts, Phys. Chem. Chem. Phys., 2012, 14, 11596.
- 2 T. Sreethawong and S. Yoshikawa, Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO₂ photocatalysts, Catal. Commun., 2005, 6, 661.
- 3 K. Yamaguti and S. Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 1237.
- 4 S. Xu and D. D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO₂ with deposited CuO, Int. J. Hydrogen Energy, 2009, 34, 6096.
- 5 H. F. Dang, X. F. Dong, Y. C. Dong, Y. Zhang and S. Hampshire, TiO₂ nanotubes coupled with nano-Cu(OH)₂ for highly efficient photocatalytic hydrogen production, Int. J. Hydrogen Energy, 2013, 38, 2126.
- 6 J. G. Yu, Y. Hai and B. Cheng, Enhanced Photocatalytic H₂-Production Activity of TiO₂ by Ni(OH)₂ Cluster Modification, J. Phys. Chem. C, 2011, 115, 4953.
- 7 B. Chai, T. Y. Peng, X. H. Zhang, J. Mao, K. Li and X. G. Zhang, Synthesis of C₆₀decorated SWCNTs (C₆₀-d-CNTs) and its TiO₂-based nanocomposite with enhanced photocatalytic activity for hydrogen production, Dalton Trans., 2013,42, 3402.

- 8 Q. J. Xiang, J. G. Yu and M. Jaroniec, Synergetic effect of MoS₂ and graphene as cocatalysts for enhanced photocatalytic H₂ production activity of TiO₂ nanoparticles, J. Am. Chem. Soc., 2012, 134, 6575.
- 9 T. Sreethawong, Y. Suzuki and S. Yoshikawa, Photocatalytic evolution of hydrogen over mesoporous TiO₂ supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template, I Int. J. Hydrogen Energy 2005, 30, 1053.