Supporting information (SI)

Enhanced Activity, Durability and Anti-poisoning property of Pt/W₁₈O₄₉ for Methanol Oxidation with a Sub-stoichiometric Tungsten Oxide W₁₈O₄₉ Support

Fig. S1 Crystal structure of the monoclinic $W_{18}O_{49}$.

Fig. S2 Mechanism of the oxygen buffering effect in $Pt/W_{18}O_{49}$.

Fig. S3 Raman spectrum of the $W_{18}O_{49}$ nanowire arrays.

Fig. S4 SEM image of the (a) $W_{18}O_{49}$ NRs and (b) Pt/ $W_{18}O_{49}$. High-magnification SEM image of Pt/ $W_{18}O_{49}$ is shown in the inset of (b).

Fig. S5 Ultraviolet/visible (UV/Vis) absorption spectrum of the $W_{18}O_{49}$ NRs.

Fig. S6 TEM images of Pt-black: (a) dispersion before the durability test and (b) aggregation/Oswald ripening after a 5000-cycle durability test. Pt/C: (c) dispersion before the durability test and (d) dissolution/aggregation/Oswald ripening after a 5000-cycle durability test. Pt/W₁₈O₄₉: (e) dispersion before the durability test and (f) dispersion almost unchanged after a 5000-cycle durability test.

Fig. S7 ADT recorded in an Ar-purged 0.5 M H_2SO_4 with a sweep rate of 100 mV·s⁻¹ of the $W_{18}O_{49}$ NRs support (solid for the1st cycle and dotted for the 5000th cycle).

Fig. S8 The corresponding particle size distribution obtained by counting 200 Pt particles of $Pt/W_{18}O_{49}$ after a 5000-cycle ADT in Fig. S6f.

Fig.S9 Chronoamperometry measurements were performed in a 0.5 M H₂SO₄and 0.5 M CH₃OH solutionat 0.359 V (VS. SCE) after a 50-cycle CV activity in an Ar-purged 0.5 M H₂SO₄ solution with a sweep rate of 100 mV·s⁻¹. (a) Transient current density curves of methanol oxidation by chronoamperometry experiments for Pt/W₁₈O₄₉ (purple curve), Pt-black (red curve) and Pt/C (blue curve), the potential dependence of the steady-state current density recorded at 60 s is shown in inset. Chronoamperometry curves before and after a 5000-cycle ADT for Pt-black (red solid

curve for the 1st cycle and dotted curve for the 5000th cycle in (b)), Pt/C (blue solid curve for the 1st cycle and dotted curve for the 5000th cycle in (c)), Pt/W₁₈O₄₉ (purple solid curve for the 1st cycle and dotted curve for the 5000th cycle in (d)), inset is the loss of transient current density at 60 s after the ADT of the three catalysts, respectively.

Sar	nple	W ⁵⁺	W ⁶⁺
W ₁₈ O ₄₉	Binding energy	33.90	35.64
	Content	26.22	73.78
Pt/W ₁₈ O ₄₉	Binding energy	34.17	35.70
	Content	13.33	86.67
Pt/W ₁₈ O ₄₉ -CV	Binding energy	34.14	36.27
	Content	27.70	72.30

Table S1 Binding energy and atomic content (%) of different W 4f valence states (W⁵⁺ and W⁶⁺) obtained from the W 4f XPS spectra.

Table S2 Comparison of the electrochemical activities of the $Pt/W_{18}O_{49}$, Pt-black and

	onset potential (V)		ECSA			Specific Activity (mA cm ⁻²)			
			ECSA	ECSA		CH ₃ OH HCOOH		OOH	
	CH ₃ OH	НСООН	$(m^2 g^{-1})$	Loss (%)	$I_{ m f}$	$m{E}_{ m f}$	$I_{\rm f}/I_{\rm b}$	$I_{ m f}$	E_{f}
Pt-black	0.1	0.01	23.28	49.50	0.81	0.665	0.99	0.29	0.648
Pt/C	0.1	0.01	86.46	85.25	0.63	0.689	0.79	0.27	0.651
Pt-W ₁₈ O ₄₉	0.1	0.01	37.05	27.12	1.14	0.654	1.12	0.44	0.656

Pt/C catalysts.

Table S3 Comparison of the chronoamperometry activities of the $Pt/W_{18}O_{49}$, Pt-black and Pt/C catalysts at 0.359 V (Vs. SCE) before and after a 5000-cycle durability test at 60 s.

	Pt-black	Pt/C	Pt-W ₁₈ O ₄₉
1 th (mA mg ⁻¹ _{Pt})	0.445	0.759	0.806
5000 th (mA mg ⁻¹ Pt)	0.231	0.209	0.663
Loss (%)	48.09	72.46	17.74