Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Synthesis of novel platinum complex core as a selective Ag⁺ sensor and its H-bonded tetrads selfassembled with triarylamine dendrimers for electron/energy transfers

Muthaiah Shellaiah, Mandapati V. Ramakrishnam Raju, Ashutosh Singh, Hsin-Chieh Lin, Kung-Hwa Wei and Hong-Cheu Lin*

Department Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

Contents:

1. Maldi-Tof mass spectra of PtC	2
2. Selectivity studies of PtC over other competing metal ions	2
3. Fluorescence calibration curve of PtC in presence of Ag ⁺	3
4. Detection limit calculation using linear fitting	3
5. Reversibility cycles of PtC towards Ag ⁺ and PMDTA	4
6. Possible binding mechanism of PtC towards Ag ⁺	4
7. TRPL spectra of PtC and PtC + Ag ⁺	5
8. TRPL data of all complexes Table S1	6
9. Stern-volmer constants of all metals with PtC Table S2	7
10. Compound characterization data (¹ H, ¹³ C & Mass data Figs S8- S27)	8-17

Figure S1. Maldi-tof mass of PtC.

Figure S2. **PtC** sensor selectivity towards metal ions in the presence of different metal ions; where **PtC** concentration is 0.1 μ M and the metal ion concentration is 1000 μ M. (All tested metals are mixtures except Ag⁺).

Figure S3. PL Intensity changes of **PtC** (0.1 μ M) as a function of Ag⁺ concentration (0-1000 μ M; with an equal span of 100 μ M).

Figure S4. Detection limit of PtC towards Ag⁺ by linear fitting calculation.

Figure S5. Reversibility tests of PtC towards Ag⁺ and PMDTA.

Figure S6. Possible binding mechanism of PtC towards Ag⁺.

Figure S7. TRPL spectra of free PtC and in the absence/presence of Ag^+ .

Compound	$\tau_1(ns)$	$\tau_2(ns)$	A ₁ (%)	A ₂ (%)	$\tau_{Avg}(ns)$
PtC	1.55	5.96	28.3	71.7	3.71
PtC-TPAD1	3.13	6.71	35.4	64.6	4.83
PtC-(TPAD1) ₂	3.45	7.15	38.1	61.9	5.65
PtC-(TPAD1) ₃	3.76	9.12	45.2	54.8	6.43
PtC-TPAD2	3.25	6.95	39.4	60.6	5.12
PtC-(TPAD2) ₂	4.51	8.56	43.2	56.8	6.55
PtC-(TPAD2) ₃	5.73	9.85	47.1	52.9	8.11
PtC + Ag ⁺	1.67	6.72	76.2	23.8	2.95

Table S1. Time-resolved fluorescence decay constants of PtC, tetrads [PtC-(TPAD1)₃ and PtC-(TPAD2)₃] and PtC+Ag⁺.

S. No	aMotel Iong	^b K _{SV} (M ⁻¹)			
	Wietal Ions	$(\lambda_{abs} = 408 \text{ nm}; \lambda_{em} = 461 \text{ nm})$			
1	Ag^{+}	3.61 x 10 ⁴			
2	Cu^+	2.67 x 10 ²			
3	K^+	5.47 x 10 ²			
4	Na ⁺	5.95 x 10 ²			
5	Fe ³⁺	4.99 x 10 ²			
6	Al ³⁺	8.05 x 10 ²			
7	Ag^{2+}	8.10 x 10 ²			
8	Ba ²⁺	7.01 x 10 ²			
9	Ca ²⁺	7.96 x 10 ²			
10	Co ²⁺	$6.03 \ge 10^2$			
11	Cu ²⁺	8.98 x 10 ²			
12	Fe ²⁺	$6.04 \ge 10^2$			
13	Mg^{2+}	3.95 x 10 ²			
14	Mn ²⁺	4.99 x 10 ²			
15	Ni ²⁺	3.02×10^2			
16	Pb ²⁺	6.93 x 10 ²			
17	Zn^{2+}	$1.21 \ge 10^2$			
18	Hg ²⁺	8.95 x 10 ²			
19	Cr ³⁺	5.01 x 10 ²			
20	^c All metals	8.30 x 10 ²			

Table S2	. Stern-Volmer	constants (K _{SV}) of	different metal	ions
----------	----------------	----------------------------	------	-----------------	------

^aMetal ion concentration is 1000 μ M in H₂O from their respective aqueous solution and **PtC** concentration is 0.1 μ M in THF. ^bK_{SV} = [(I₀/I-1)]/[Q]; [Q] = quencher concentration (1000 μ M for all metal ions). ^cAll metals is a mixture of metal ions except Ag⁺.

Figure S8. ¹H NMR spectrum of compound 2.

Figure S9. ¹H NMR spectrum of compound 3.

Figure S10. ¹H NMR spectrum of compound 4.

Figure S11. ¹H NMR spectrum of compound 5.

Figure S12. ¹H NMR spectrum of compound 6.

Figure S13. ¹H NMR spectrum of compound 8.

Figure S14. ¹H NMR spectrum of compound 9.

Figure S15. ¹H NMR spectrum of compound 10.

Figure S16. ¹³C NMR spectrum of compound 10.

Figure S17. ¹H NMR spectrum of compound 11.

Figure S18. ¹³C NMR spectrum of compound 11.

Figure S19. ¹H NMR spectrum of compound 12.

Figure S20. ¹³C NMR spectrum of compound 12.

Figure S21. ¹H NMR spectrum of compound 13.

Figure S22. ¹H NMR spectrum of compound 15.

Figure S23. ¹³C NMR spectrum of compound 15.

Figure S24. ¹H NMR spectrum of compound 16.

Figure S25. Mass (FAB) spectrum of compound 16.

Figure S26. ¹H NMR spectrum of PtC.

Figure S27. ¹³C NMR spectrum of PtC.