Supporting Information

Construction of mass-controllable electrodes from mesoporous $NiCo_2S_4$ nanosheets for high performance supercapacitors

Tao Peng, Zhongyu Qian, Jun Wang, * Dalei Song, Jinyuan Liu, Qi Liua and Peng Wang b

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University,

150001, PR China.

^b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy

of Sciences, 130022, PR China.

* Corresponding author: Tel.: +86 451 8253 3026; fax: +86 451 8253 3026; E-mail: junwang@hrbeu.edu.cn.

Fig.S1 (a) XRD patterns of the $NiCo_2S_4$ and $NiCo_2O_4$. The $NiCo_2O_4$ nanosheets (JCPDF 20-0781) change into the $NiCo_2S_4$ nanosheets (JCPDF 43-1477) after AEC; (b) EDX spectrum of the $NiCo_2S_4$ nanosheets;

Fig.S2 XPS spectra of the $NiCo_2S_4$ nanosheets:(a) survey spectrum, (b) Ni 2p, (c) Co 2p and (d) S 2p.

Fig.S3 (a) N_2 adsorption-desorption isotherm and (b) the pore size distribution of $NiCo_2S_4$.

Fig.S4 (a),(b),(c),(d) CV spectra of D1, D2, D3, D4 at scan rates between 5 and 20 mV s⁻¹ respectively; (e) b-value determination of the peak cathodic currents from 5 to 60mV s⁻¹.

Fig.S5 (a)(b)(c)(d) Charge and discharge curves for D1, D2, D3, D4 at current densities between 10 to 60 mAcm⁻², respectively;

Fig.S6 (a) EIS spectra for the electrodes of C1 and D1 at open circuit voltage; (b) EIS spectra for the electrodes of D1, D2, D3, D4 at open circuit voltage.

	NiCo ₂ S ₄	Urchin-like NiCo ₂ S ₄	NiCo ₂ O ₄
	Nanotube Arrays ¹⁶	Nanostructure ²⁰	hetero-structure arrays ²⁴
Synthesis method	Solution based;	Hydrothermal	Hydrothermal
	H ₂ S sulfurization		
Mass loading	4.3 mgcm^{-2}	$2-3 \text{ mgcm}^{-2}$	1.8 mgcm^{-2}
Specific capacitance	$2.86 \text{ Fcm}^{-2} (4 \text{ mAcm}^{-2})$	1149 Fg^{-1} (1 Ag^{-1})	$1089 \text{ Fg}^{-1} (2 \text{ Ag}^{-1})$
Cycle retention	96% after 2000 cycles	91.4% after 5000 cycles	97.2% after 8000 cycles
	(10 mAcm^{-2})	(20Ag^{-1})	(2Ag^{-1})

Table S1 Literature survey of related active material electrodes for electrochemical capacitors