Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Mechano-chemical Synthesis of Nanostructured FePO₄/MWCNTs Composites as Cathode Materials for Lithium-ion Batteries

Hui Dou,^{a,b} Ping Nie,^a and Douglas R. MacFarlane *b

^aCollege of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing, China

^bAustralian Centre for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia.

Fax: +61-3-99054597; Tel: +61-3- 99054540; E-mail: douglas.macfarlane@monash.edu

Procedures	Properties		Performance	References
	Merits	Demerits		
DNA-directed growth	Ultrasmall nanoparticles with size of ~5 nm	 Complicated process Multi-step Time-consuming Very low pH 	132 mAh g ⁻¹ at 1C 88 mAh g ⁻¹ at 5C excellent stability	Ref. 1
Aqueous solution-based method	FePO ₄ ·H ₂ O/carbon nanotube coaxial nanocomposite	Required calcination	157 mAh g ⁻¹ at 12.5 mA g ⁻¹ 146 mAh g ⁻¹ at 625 mA g ⁻¹ 61 mAh g ⁻¹ at 15 A g ⁻¹	Ref. 2
Aqueous solution-based mineralization	 Low temperature Core–shell FePO₄@MCNT nanowire 	 Complicated process Multi-step Time-consuming Low yield Required calcination 	175 mAh g ⁻¹ at 20 mA g ⁻¹ excellent stability	Ref. 3
Hydrothermal approach	 Low temperature One-pot 	 The addition of surfactant With a diameter of 30-300 nm 	 120 mAh g⁻¹ at 10 mA g⁻¹ 70 mAh g⁻¹ at 20 mA g⁻¹ 55 mAh g⁻¹ at 60 mA g⁻¹ (cathode for sodium-ion batteries) 	Ref. 4
Microemulsion technique	 Nanoparticle with uniform size- distribution Core–shell FePO₄@MCNT nanowire 	 The addition of surfactant Complicated process Required calcination 	155.2 mAh g^{-1} at 0.1C 133.2 mAh g^{-1} at 0.3C 75.3 mAh g^{-1} at 1C (cathode for sodium-ion batteries)	Ref. 5
Mechano- chemical Synthesis	 Room temperature Simple process High yield 	 Relatively expensive ionic liquid Without formation of core-shell structure 	143 mAh g ⁻¹ at 40 mA g ⁻¹ excellent stability	This work

Table S1 Comparison of the FePO₄/MWCNTs with other FePO₄/CNTs based materials reported recently.

References

- 1. C. X. Guo, Y. Q. Shen, Z. L. Dong, X. D. Chen, X. W. Lou and C. M. Li, *Energy Environ. Sci.*, 2012, 5, 6919-6922.
- 2. J. P. Jegal, J. G. Kim and K. B. Kim, *Electrochem. Commun.*, 2013, 30, 87-90.

- 3. S. W. Kim, J. Ryu, C. B. Park and K. Kang, Chem. Commun., 2010, 46, 7409-7411.
- 4. Y. Liu, Y. Xu, X. Han, C. Pellegrinelli, Y. Zhu, H. Zhu, J. Wan, A. C. Chung, O. Vaaland, C. Wang and L. Hu, Nano Lett., 2012, 12, 5664-5668.
- 5. S. Xu, S. Zhang, J. Zhang, T. Tan and Y. Liu, J. Mater. Chem. A, 2014, 2, 7221-7228.