Synthesis of amino-functionalized metal-organic framework at nanoscale for highly dispersed gold nanoparticle deposition and catalysis

Yi Luan, Yue Qi, Hongyi Gao, Nannan Zheng, Ge Wang*

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China Fax: +86 10 62327878; Tel: +86 10 62333765; Email: gewang@mater.ustb.edu.cn

Supporting Information

Table of Contents

General information	S2
Characterizations	S3
Synthesis of Au(0) catalyst	S11
Reduction of 4-Nitrophenol using NaBH ₄	S15
Compound versus internal standard for GC-MS calibration	S16
In-situ monitoring of aerobic oxidation reaction for Table 3	S21
The isolated yield determination for aerobic oxidation of alcohol	S41

General Information. The phase composition of the samples were investigated by X-ray powder diffraction (XRD, M21X, Cu K α radiation, λ =0.154178 nm). Their morphology and structure of the as-obtained product was characterized by scanning electron microscopy (SEM, ZEISS SUPRA55). Further information of the structure were revealed by transmission electron microscopy (TEM, TEI Tecnai F20) and high-resolution TEM (HRTEM, TEI Tecnai F20) using TEI Tecnai F20. The samples for the SEM, TEM and HRTEM measurements were first dispersed in ethanol and sonicated for a few minutes, and then supported onto the silicon slice and the holey carbon film on a Cu grid, respectively. The chemical compositions were analyzed using X-ray photoelectron spectrometer (XPS, ESCALAB 250Xi) and inductively coupled plasma-atomic emission spectrometry (ICP-AES, Vavian 715-ES). Thermogravimetric analysis (TG) were conducted by a TGA instrument (Netzsch STA449F) at a heating rate of 10°C/min under an N₂ flow. The specific surface areas were calculated by nitrogen sorption-desorption isotherms using a Micromeritics ASAP 2420 adsorption analyzer. The pore size distributions were derived from the adsorption branches of isotherms by using the Barrett–Joyner–Halenda (BJH) model. Fourier transform Infrared spectra (FTIR) were acquired on a Nicolet 6700 using the KBr pellet technique. The catalytic results were analyzed by a gas chromatography-mass spectrum (GC-MS, Agilent7890/5975C-GC/MSD).

Figure S1. Amino functionalized MOFs for $HAuCl_4$ absorption. (a) $HAuCl_4$ solution. (b) Centrifuged UiO-66(NH₂) in solution (c) Time zero when UiO-66(NH₂) was added to $HAuCl_4$ solution (centrifuged) (d) 10 min after UiO-66(NH₂) was added to $HAuCl_4$ solution (centrifuged)

Figure S2. UV spectrum of HAuCl₄ before and after the adsorption.

Figure S3. The dispersion of Au@UiO-66(NH₂) and Au@nano UiO-66(NH₂) in toluene solution. (a, 0 min, b, 5 min, c, 30 min)

Live Time: 30.0 sec.

Acc.Voltage: 15.0 kV Take Off Angle: 35.0 deg.

Element	Net	Net	Counts	Weight %	Weight %	Atom %	Atom %
Line	Counts		Error		Error		Error
NK	39	+/-	36	11.25	+/-10.39	22.32	+/-20.60
O K	527	+/-	33	36.11	+/- 2.26	62.71	+/- 3.93
Zr L	5273	+/-	145	46.15	+/- 1.27	14.06	+/- 0.39
Au L	19	+/-	22	6.49	+/- 7.51	0.91	+/- 1.06
Total				100.00		100.00	

Quantitative Results

Figure S4. EDX results of 1.8 wt% Au@UiO-66(NH₂)

Figure S5. FTIR of UiO-66(NH₂) and various loading of Au@UiO-66(NH₂).

Figure. S6. FTIR of recycled 1.8 wt% Au@UiO-66(NH₂)

Figure S7. BET adsorption-desorption isotherms of UiO-66(NH₂)

Figure S8. BET adsorption-desorption isotherms of (left) 1.8 wt% Au@UiO-66(NH₂) (right) 12.9 wt% Au@UiO-66(NH₂)

Figure S9. TGA curve for the as-synthesized nanosized UiO-66(NH₂)

Figure S10. TGA curve for 1.8 wt% Au@UiO-66(NH₂) (left) and 12.9 wt% Au@UiO-66(NH₂)

Figure S11. HRTEM images Au@IRMOF-3.

Figure S12. PXRD of IRMOF-3 and IRMOF-3 after HAuCl₄ and NaBH₄ treatment.

Figure S13. PXRD of recycled 1.8 wt% Au@UiO-66(NH₂) catalyst after five times. 1.8 wt% Au@UiO-66(NH₂) (Bottom), recycled 1.8 wt% Au@UiO-66(NH₂) (Top).

Figure S14. SEM and TEM of 1.8 wt% Au@UiO-66(NH_2) after recycled for 5 times in the aerobic oxidation.

Synthesis of unsupported gold stabilized by citrate

Figure S15. SEM images of citrate stabilized unsupported gold.

Procedure of citrate stabilized gold nanoparticles synthesis

Citrate stabilized gold nanoparticles were prepared according to the literature procedure.¹ A 50 mL aqueous solution of HAuCl₄ (2.5×10^{-3} M) was heated to boiling, then 2 mL of trisodium citrate solution (1% by wt) was added to it under continuous stirring. After 20s, the solution turned faint blue. The reaction solution was boiled for another 30 min in order to achieve complete reduction of Au(III) ions. The resulting unsupported gold was separated through centrifugation and washed with water (3 x 15 mL).

¹ Tarasankar Pal, etc. J. Phys. Chem. C, 2007, 111 (12), pp 4596–4605

Synthesis of Au@TiO2

Figure S16. TEM images of Au@TiO₂

Procedure of Au@TiO2 synthesis²

Synthesis of hierarchical titanate 3D nanospheres

0.8 mL of 0.1 M aqueous potassium chloride was injected into a mixture of 160 mL ethanol and 0.05 g hydroxypropyl cellulose (HPC), and added 4.4 mL tetrabutyl titanate at ambient temperature under magnetic stirring until a white precipitate appeared. Then the suspension was sit in static condition for 24 h in a closed container at room temperature. The TiO₂ precipitation was collected by centrifugation and washed with ethanol for 3 times and deionized water for 3 times. An amount of 0.025 g of the TiO₂ precipitation was added in aqueous NaOH solution (15 mL, 1 M), and then transferred into a 25 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed and heated in an oven at 150 °C for 12 h, and then cooled to room temperature. The resultant precipitate was collected by filtration, washed thoroughly with deionized water and ethanol for 3 times, respectively.

Synthesis of Au@TiO₂

Hierarchical titanate 3D nanospheres (0.05 g) were dispersed in 10 mL deionized water and then placed in a 250 mL three-necked round bottom flask with a mechanical stirrer. An aqueous solution of HAuCl₄ (2.5 mL, 0.025 M aqueous solution) was added and the

² Y. Qi and G. Wang, etc. Applied Surface Science, 2014, 293, 359-365.

mixture was stirred at 300 rpm for 4 h in an ice-bath. Subsequently NaBH₄ aqueous solution (10 mL, 0.05 M aqueous solution) was rapidly added and the reaction continued for 0.5 h at 0 °C with vigorous stirring. The Au@TiO₂ product was separated by centrifugation, washed three times with deionized water to remove excess NaBH₄ and dried under vacuum. ICP-AES analysis shows a gold content of 2.8 wt% for Au@TiO₂.

Synthesis of Au@PANI

Figure S17. TEM image of Au@PANI

Procedure of Au@PANI synthesis³

Synthesis of polystyrene (PS) template

In a 250 mL four-necked round-bottom flask, 140 mL of deionized water and 10 g of styrene were placed in with a mechanical stirrer, a N_2 inlet and a reflux condenser. Then N_2 was bubbled through the solution to remove oxygen for 10 min while stirring (300 rpm), and heated to 70 °C via oil bath. At this time, 10 mL of KPS aqueous solution (0.023 g/mL) was injected into the flask to initiate the polymerization. The reaction mixture was stirred at 70 °C for 24 h, then PS microspheres were collected by

³ Au@PANI preparation is achieved according to the literature procedure. W. C. Guo and G. Wang, etc. Chemistry – An Asian Journal, 2013, 8, 1160–1167.

centrifugation and washed with water and ethanol three times. The PS microspheres precipitate was then dried under vacuum.

Preparation of polystyrene/polyaniline (PS/PANI) support

PS microspheres (0.3 g) were added to 20 mL deionized water and dispersed to form an emulsion. 3 mmol of aniline was subsequently added to the emulsion under vigorous stirring with a magnetic stir bar at room temperature for 12 h to swell the monomer into the PS templates. After the swelling of the templates, the $Fe(NO_3)_3 \cdot 9H_2O$ was added as oxidant. The reaction was stirred for 12 h, the composite microspheres were centrifuged, washed with water until the supernatant became colorless, and dried under vacuum.

Gold nanoparticles immobilization on PS/PANI support

PS/PANI (0.05 g) composite microspheres were dispersed in 10 mL deionized water and then placed in a 250 mL three-necked round bottom flask with a mechanical stirrer. An aqueous solution of HAuCl₄ (2.5 mL, 0.025 M aqueous solution) was added and the mixture was stirred at 300 rpm for 4 h in an ice-bath. Subsequently NaBH₄ aqueous solution (10 mL, 0.05 M aqueous solution) was rapidly added and the reaction continued for 0.5 h at 0 °C with vigorous stirring. The product was separated by centrifugation, washed three times with deionized water to remove excess NaBH₄ and dried under vacuum.

Preparation of hollow Au@PANI catalyst

0.03 g PS/PANI@Au nanocatalyst was dispersed in 5 mL of THF and stirred for 24 h at room temperature to remove the PS template. The product was centrifuged, washed with ethanol, and dried under vacuum. ICP-AES analysis shows a gold content of 2.4 wt%.

Reduction of 4-Nitrophenol using NaBH₄.

Figure S18. Catalytic reduction of 4-nitrophenol by NaBH₄ over Au@UiO-66(NH₂).

The reduction of 4-NP was carried out in a centrifuge tube and was monitored by UV/Vis spectroscopy at room temperature. The alcohol solution of 4-NP (0.005 M, 2 mL) was added to an ethanol dispersion of the Au@UiO-66(NH₂) catalyst (1.8 wt%, 0.01 g). Then, freshly prepared NaBH₄ (0.2 M, 10 mL) was added rapidly. The catalytic reaction solution was monitored by UV/Vis spectroscopy every 3 min until the solution became colorless. The linear relationship between $\ln(C_t/C_0)$ and reaction time was elucidated, which showed the 4-nitrophenol reduction occurred under first-order reaction kinetics (Fig. 18b). Here C_t was definited as absorbance of 4-nitrophenol at the fixed intervals, and C₀ as absorbance of 4-nitrophenol at the initial stage. The first-order rate constant (k) was calculated to be -0.45 min⁻¹ for Au@UiO-66(NH₂).

However, it is observed that the crystalline structure of MOF support tended to decompose slowly over the course of the reaction according to the XRD analysis, which has not been reported in other Au@MOF reduction systems. The 4-nitrophenol reduction was designed to be finished within 15 minutes in order to avoid the loss of the crystalline of the MOF support. The NaBH₄-promoted slow decomposition of UiO-66(NH₂) support should be taken into consideration for future catalytic reaction design.

Compound versus internal standard for GC-MS calibration.

Table 3, entry 1

In-situ monitoring of aerobic oxidation reaction for Table 3.

The in-situ GC-MS monitoring of conversion and yield was performed through direct injection of reaction solution after 10 times dilution. The in-situ ¹H NMR monitoring of reaction conversion and yield was performed in DMF d₇ solvent. The crude sample was filtered through a sodium sulfate layer and transferred to a NMR tube for direct ¹H NMR analysis. There is no aqueous work-up for GC-MS and ¹H NMR in-situ monitoring.

Table 3, entry 1

Peak R.T. Ini. TOP Stp. Peak Height %											
#	min	Scan S	Scan S	Scan 7	Гуре	Are	ea '	%	area		
1	8.613	1135	1140	1165	Μ	1878216	30479	347	100.00%	6 87.972%	,
2	9.523	1293	1300	1309	Μ	265613	41672	240	13.67%	12.028%	

GC-MS at 20 min

1	7.368	918	923	935	M 13	301407	20330557	00.00%	55.192%
2	8.610	1136	1140	1157	′ M	772170	12386745	60.93%	33.627%
3	9.522	1295	1299	1311	Μ	271372	4118954	20.26%	11.182%

¹H NMR at 20 min

GC-MS at 40 min

3 9.521 1293 1299 1308 M 241647 3694011 15.36% 12.350%

¹H NMR at 40 min

GC-MS at 60 min

1	7.369	918	923	933	M 23	32653	36933739	100.00%	86.089%
2	8.617	1138	1141	1153	Μ	77303	1347104	3.65%	3.140%

3 9.523 1294 1300 1313 M 295166 4620844 12.51% 10.771%

¹H NMR at 60 min

Table 3, entry 2

GC-MS at 0 min

			~-r·				
#	min	Scan Scan	Scan	Туре	Area	%	area

--- ---- ----- ---- ---- -----

1 9.520 1293 1299 1308 M 350796 5410317 11.75% 10.516%

 $2 \hspace{.1in} 12.446 \hspace{.1in} 1804 \hspace{.1in} 1810 \hspace{.1in} 1865 \hspace{.1in} M \hspace{.1in} 2693349 \hspace{.1in} 46037063 \hspace{.1in} 100.00\% \hspace{.1in} 89.484\%$

GC-MS at 20 min

2 12.065 1738 1744 1756 M 2627309 42388701 100.00% 76.897%

3 12.438 1803 1809 1821 M 509048 8250405 19.46% 14.967%

¹H NMR at 20 min

GC-MS at 40 min

19	.520	1294	1299	1309	М	327004	5200959	9.36%	8.307%
2 12	2.066	1735	1744	1775	М	3382429	55537159	100.00	% 88.709%
3 12	2.440	1804	1809	1836	М	99156	1867702	3.36%	2.983%

¹H NMR at 40 min

GC-MS at 60 min

- 1 9.520 1294 1299 1309 M 301825 4607792 8.41% 7.757%
- 2 12.066 1737 1744 1769 M 3370816 54793557 100.00% 92.243%

¹H NMR at 60 min

Table 3, entry 3

GC-MS at 0 h

1 04	K IV. I		Dup.	i our moight			/0
#	min	Scan Scan	Scan	Туре	Area	%	area
1	8.896	1185 1190	1227	M 2138599	34206279	100.00%	6 89.981%
2	9.522	1293 1299	1311	M 249018	3808757	11.13%	10.019%

GC-MS at 2 h

1	7.258	899 9	904	912	M 1	064574	16435718	95.15%	43.712%
2	8.893	1186 1	1189	1206	М	110053	1 1727374	4 100.00%	6 45.940%
3	9.521	1294 1	1299	1309	Μ	246024	3890891	22.52%	10.348%

¹H NMR at 2 h

GC-MS at 4 h

¹H NMR at 4 h

¹H NMR at 6 h

Table 3, entry 4

GC-MS at 0 min

- 1 9.522 1294 1299 1305 M 244250 3749702 15.30% 13.273%
- $2 \hspace{.1in} 12.766 \hspace{.1in} 1861 \hspace{.1in} 1866 \hspace{.1in} 1894 \hspace{.1in} M \hspace{.1in} 1538590 \hspace{.1in} 24500995 \hspace{.1in} 100.00\% \hspace{.1in} 86.727\%$

GC-MS at 20 min

#	min	Scan Scan Scan Type	Area	%	area

1	9.521	1294	1299	1306	М	247451	3847271	14.87%	9.268%
2	12.296	1778	1784	1798	М	1621320	25864479	9 100.00%	62.308%
3	12.763	1859	1866	1888	М	753183	11799011	45.62%	28.424%

¹H NMR at 20 min

GC-MS at 40 min

 Peak
 R.T. Ini. TOP
 Stp. Peak
 Height
 %

 #
 min
 Scan
 Scan
 Type
 Area
 %
 area

 1
 9.521
 1295
 1299
 1312
 M
 366038
 5754978
 10.17%
 8.537%

 2
 12.301
 1776
 1785
 1812
 M
 3413211
 56569689
 100.00%
 83.913%

 3
 12.762
 1860
 1866
 1890
 M
 296222
 5089806
 9.00%
 7.550%

¹H NMR at 40 min

GC-MS at 60 min

19	.522	1294	1299	1311	М	278893	4224710	8.27%	7.545%
2 12	2.300	1779	1785	1806	М	3136942	51083523	100.009	% 91.229%
3 12	2.764	1862	1866	1873	M2	41453	686521	1.34%	1.226%

¹H NMR at 60 min

GC-MS at 0 min

Pea	k R.7		%						
#	^t min Scan Scan Scan Type						Area	%	area
1	9.060	1213	1219	1229	Μ	2335862	35392009	100.00	% 88.854%
2	9.521	1295	1299	1305	Μ	289328	4439595	12.54%	11.146%

GC-MS at 20 min

1 Cu	K IV. I		Dup.	u oui	a mongine		70		
#	min	Scan Scan	Scan	Туј	pe	Area	%	area	
1	9.062	1214 1219	1227	М	1787123	27687799	100.00%	53.687%	
2	9.168	1233 1238	1245	М	1148264	18195177	65.72%	35.281%	
3	9.522	1294 1299	1306	М	379622	5689528	20.55%	11.032%	

¹H NMR at 20 min

GC-MS at 40 min

¹H NMR at 40 min

GC-MS at 60 min

¹H NMR at 60 min

The isolated yield determination for aerobic oxidation of alcohol

The reaction was run in a 25 mL flask with reflux condenser. In a typical reaction, the flask was first charged with desired amount of alcohol, DMF solvent and Au@UiO-66(NH₂) catalyst. After purging three times with oxygen and set up with the oxygen balloon, the closed vessel was heated rapidly to reach 100 °C. After 1 h, the flask was cooled to room temperature. The reaction was purified without work-up by flash chromatography over silica gel column (2% EtOAc in hexanes) to afford the aldehyde product **4a** as a clear oil (96.5 mg, 91% yield). Analytical thin layer chromatography was performed using EMD 0.25 mm silica gel 60-F plates. Flash column chromatography was performed on Sorbent Technologies 60 Å silica gel.