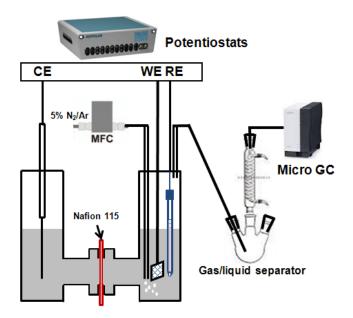
Supporting information


Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis

Jing Wang,^[a, b] Dunfeng Gao,^[a, b] Guoxiong Wang,*^[a] Shu Miao,^[c] Haihua Wu,^[a, b]
Jiayuan Li,^[a, b] and Xinhe Bao*^[a, c]

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.

^bUniversity of Chinese Academy of Sciences, Beijing, 100039, China.

^cDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

Scheme S1 Schematic diagram for detecting the hydrogen and oxygen evolution on the Co@N-C electrode in an H shape cell.

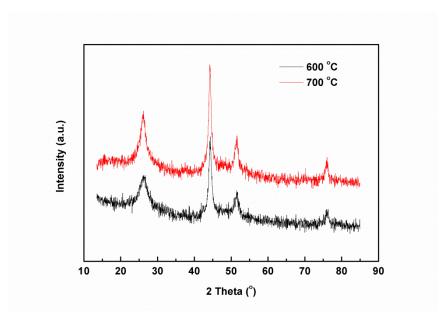


Fig. S1 XRD patterns of Co@N-C pyrolyzed at 600 °C and 700 °C, followed with acid-leaching.

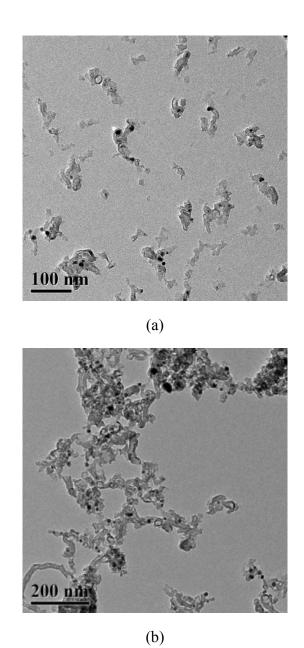


Fig. S2 TEM images of Co@N-C pyrolyzed at 600 $^{\rm o}{\rm C}$ (a) and 700 $^{\rm o}{\rm C}$ (b) followed with acid-leaching.

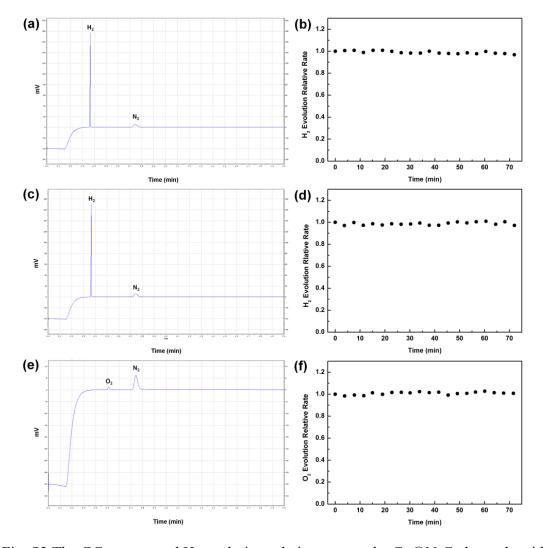
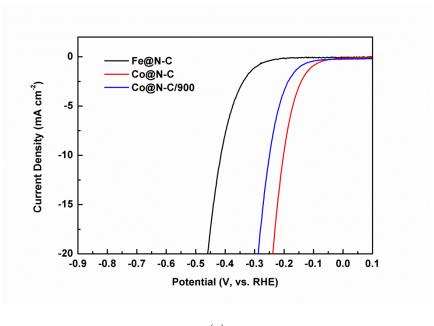



Fig. S3 The GC spectra and H_2 evolution relative rate on the Co@N-C electrode with the electrolysis time in 1 M HClO₄ (a), (b) and 1 M KOH solution (c), (d). The GC spectra and O₂ evolution relative rate on the Co@N-C electrode with the electrolysis time in 1 M KOH solution (e), (f).

(a)

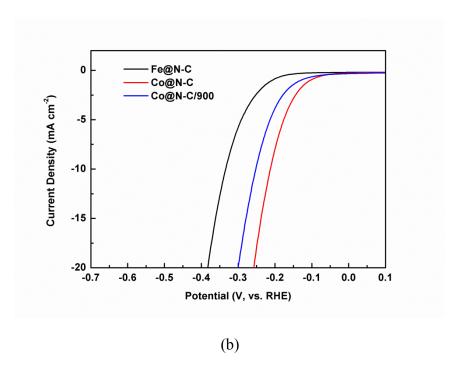


Fig. S4 HER activities of Fe@N-C, Co@N-C and Co@N-C/900 in 1 M $HClO_4$ (a) and 1 M KOH (b) solutions.

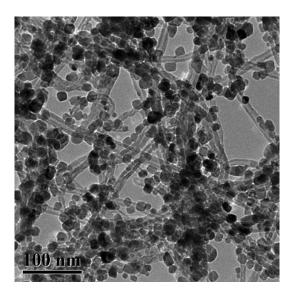


Fig. S5 TEM image of CoO_x/MWCNT.

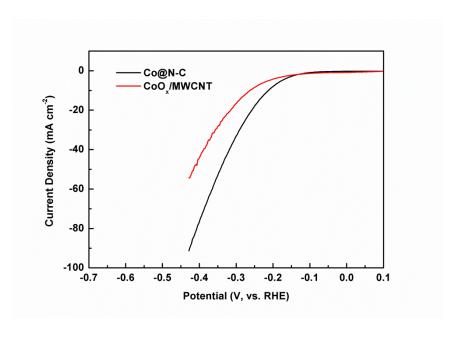
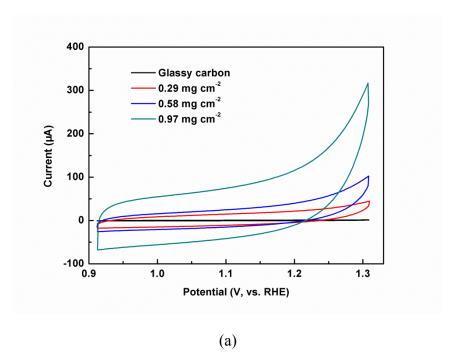



Fig. S6 HER activities of Co@N-C and CoO_x/MWCNT in 1M KOH solution.

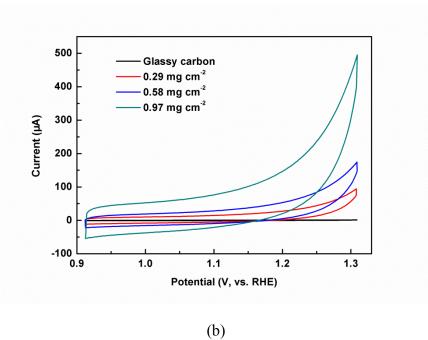


Fig. S7 Cyclic voltammetries of Fe@N-C (a) and Co@N-C (b) with different loadings on the glassy carbon electrode. (scan rate: 10~mV s-1, electrolyte solution: 1~M KOH solution, 25~°C)

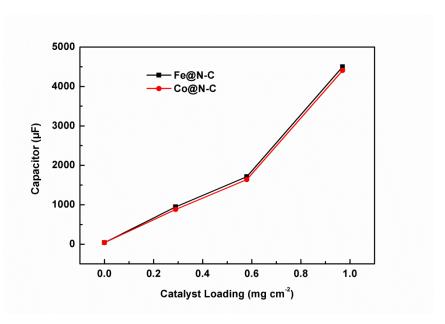


Fig. S8 The relationship between the capacitor and catalyst loading of Fe@N-C and Co@N-C.

Table S1. Summary of representative non-precious-metal HER catalysts in acidic medium

Catalyst	[H ⁺] concentration	Overpotential (V,	Reference
	(mol L ⁻¹)	at 10 mA cm ⁻²)	
Co@N-C	1	0.20	This work
MoS ₂ /Au	1	0.22	[36]
MoS ₂ /Graphene	1	0.16	[37]
O-doped MoS ₂	1	0.19	[38]
Defect-rich MoS ₂	1	0.19	[39]
Ni ₂ P	1	0.14	[40]
Cu ₂ MoS ₄	1	0.30	[41]
CoP ₂ /CNTs	1	0.13	[42]
Co/N-doped CNTs	1	0.26	[22]

Table S2. Summary of representative non-precious-metal HER catalysts in alkaline medium

Catalyst	[OH-] concentration	Overpotential (V,	Reference
	(mol L ⁻¹)	at 10 mA cm ⁻²)	
Co@N-C	1	0.21	This work
Ni ₃ S ₂ /MWCNTs	1	0.48	[44]
Ni ₂ P	1	0.23	[45]
МоВ	1	0.22	[46]
Mo ₂ C	1	0.19	[46]
Cu/Ni	1	0.26	[47]
Co/N-doped CNTs	1	0.37	[22]

Table S3. Summary of representative non-precious-metal OER catalysts in alkaline medium

Catalyst	[OH-] concentration	Overpotential (V,	Reference
	(mol L ⁻¹)	at 10 mV cm ⁻²)	
Co@N-C	1	0.40	This work
Mn ₂ O ₃	1	0.45	[48]
Zn _x Co _{3-x} O ₄	1	0.35	[49]
La _{0.8} Sr _{0.2} CoO ₃	1	0.46	[50]
Co(CO ₃) _{0.5} (OH)·0.11H ₂ O	1	0.47	[51]
Nitrogen-doped carbon	0.1	0.38	[8]