Highly selective Fe³⁺ sensing and proton conduction in a water-stable sulfonate-carboxylate Tb-organic-framework

Xi-Yan Dong,^{*a,b*} Rui Wang,^{*a*} Jun-Zhe Wang,^{*a*} Shuang-Quan Zang,^{**a*} and Thomas C. W. Mak^{*a,c*}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001,

China

^b School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, China

^c Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of

Hong Kong, Shatin, New Territories, Hong Kong SAR, China

Author for correspondence: Dr. S.-Q. Zang

Supporting Information

- Fig. S1: IR spectrum.
- Table S1: Crystal data and structure refinement for Tb-DSOA.
- Table S2: Selected bond lengths and bond angles for Tb-DSOA.
- Fig. S2: View of 3D structure of Tb-DSOA down the *b*-axis.
- Fig. S3: H-bond association.
- Fig. S4: TG plot of Tb-DSOA.
- Fig. S5: Excitation and emission spectra of Tb-DSOA.
- Fig. S6: Comparison of the photoluminescence intensity of Mⁿ⁺@Tb-DSOA.
- Fig. S7: The time-dependent photoluminescence intensity of Fe³⁺@Tb-DSOA.
- **Table S3:** ICP results of Fe³⁺@Tb-DSOA after different immersion time.
- **Fig. S8:** The diffuse reflectance spectra of solid samples of **Tb-DSOA** and Fe³⁺@Tb-DSOA.
- Fig. S9-10: The emission decay curve of Tb-DSOA and Fe³⁺@Tb-DSOA.
- Fig. S11-S14: The Nyquist plots at different RH and temperatures.
- Fig. S15: Water vapor adsorption isotherms.
- Table S4: Comparison of the conductivity of Tb-DSOA with that of some MOFs.

Fig.S1 IR spectrum of Tb-DSOA at room temperature.

Temperature	293(2) K
Formula	C14 H24 O21 S2 Tb2
Formula weight	910.29
Crystal system	tetragonal
Space Group	I-4
Ζ	4
a (Å)	12.8897(5)
<i>b</i> (Å)	12.8897(5)
<i>c</i> (Å)	16.4462(12)
$V(Å^3)$	2732.4(2)
$\rho_{\text{calcd}}(\text{g cm}^{-3})$	2.213
θ range (°)	3.16 - 24.99
F(000)	1752
$\mu \text{ (mm}^{-1}\text{)}$	5.376
Refln.collected	3164
Independent reflections	2254
Completeness	99.8 %
Refinement Method	Full-matrix least-squares on F^2
Data / restraints / parameters	2254 / 30 / 182
R(int)	0.0238
GOF	1.016
${}^{a} R_{1}[I > 2\sigma(I)], wR_{2}$	0.0265, 0.0503

Table S1. Crystal data and structure refinement for Tb-DSOA

Λ_1 an uata, $M\Lambda_2$	R_1	all	data]	,	wR ₂
-----------------------------------	-------	-----	-------	---	-----------------

0.0277, 0.0513

 $\frac{1}{aR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}}$

Table S2. Selected bond lengths (Å) and bond angles (°) for Tb-DSOA

	Bond 1	engths (Å)	
Tb(1)-O(1)#1	2.316(5)	Tb(1)-O(7)#4	2.451(4)
Tb(1)-O(2)#2	2.336(5)	Tb(1)–O(2W)	2.505(5)
Tb(1)–O(7)	2.354(4)	Tb(1)-Tb(1)#5	3.7826(5)
Tb(1)–O(6)	2.363(5)	Tb(1)-Tb(1)#3	3.7826(5)
Tb(1)-O(7)#3	2.391(4)	Tb(1)-Tb(1)#4	3.9974(6)
Tb(1)–O(1W)	2.428(5)		
	Bond	Angles (°)	
O(1)#1-Tb(1)-O(2)#2	100.27(2)	O(1)#1-Tb(1)-Tb(1)#5	121.76(1)
O(1)#1-Tb(1)-O(7)	142.49(2)	O(2)#2-Tb(1)-Tb(1)#5	72.26(1)
O(2)#2-Tb(1)-O(7)	98.48(2)	O(7)-Tb(1)-Tb(1)#5	37.48(1)
O(1)#1-Tb(1)-O(6)	80.77(2)	O(6)-Tb(1)-Tb(1)#5	141.91(1)
O(2)#2-Tb(1)-O(6)	138.38(2)	O(7)#3-Tb(1)-Tb(1)#5	39.21(1)
O(7)-Tb(1)-O(6)	105.48(2)	O(1W)-Tb(1)-Tb(1)#5	96.34(2)
O(1)#1-Tb(1)-O(7)#3	82.67(2)	O(7)#4-Tb(1)-Tb(1)#5	77.26(1)
O(2)#2-Tb(1)-O(7)#3	73.92(2)	O(2W)-Tb(1)-Tb(1)#5	139.03(1)
O(7)-Tb(1)-O(7)#3	71.75(2)	O(1)#1-Tb(1)-Tb(1)#3	65.04(1)
O(6)-Tb(1)-O(7)#3	145.94(2)	O(2)#2-Tb(1)-Tb(1)#3	108.70(2)
O(1)#1-Tb(1)-O(1W)	138.8(2)	O(2)#2-Tb(1)-Tb(1)#3	78.26(1)
O(2)#2-Tb(1)-O(1W)	75.3(2)	O(6)-Tb(1)-Tb(1)#3	109.17(1)
O(7)–Tb(1)–O(1W)	77.52(2)	O(7)#3-Tb(1)-Tb(1)#3	36.81(1)
O(6)-Tb(1)-O(1W)	77.28(2)	O(1W)-Tb(1)-Tb(1)#3	155.78(1)
O(7)#3-Tb(1)-O(1W)	132.07(2)	O(7)#4-Tb(1)-Tb(1)#3	38.06(1)
O(1)#1-Tb(1)-O(7)#4	79.48(2)	O(2W)-Tb(1)-Tb(1)#3	130.85(1)
O(2)#2-Tb(1)-O(7)#4	143.76(2)	Tb(1)#5-Tb(1)-Tb(1)#3	63.79(4)
O(7)-Tb(1)-O(7)#4	66.38(2)	O(1)#1-Tb(1)-Tb(1)#4	112.35(1)
O(6)-Tb(1)-O(7)#4	77.72(1)	O(2)#2-Tb(1)-Tb(1)#4	129.55(1)
O(7)#3-Tb(1)-O(7)#4	70.09(2)	O(7)-Tb(1)-Tb(1)#4	34.50(9)
O(1W)-Tb(1)-O(7)#4	127.92(2)	O(6)-Tb(1)-Tb(1)#4	85.77(1)
O(1)#1-Tb(1)-O(2W)	67.86(2)	O(7)#3-Tb(1)-Tb(1)#4	73.38(9)
O(2)#2-Tb(1)-O(2W)	66.78(2)	O(1W)-Tb(1)-Tb(1)#4	100.34(1)
O(7)-Tb(1)-O(2W)	149.63(2)	O(7)#4-Tb(1)-Tb(1)#4	32.96(9)
O(6)-Tb(1)-O(2W)	75.65(2)	O(2W)-Tb(1)-Tb(1)#4	161.22(1)
O(7)#3-Tb(1)-O(2W)	124.27(2)	Tb(1)#5-Tb(1)-Tb(1)#4	58.10(3)
O(1W)-Tb(1)-O(2W)	73.13(2)	Tb(1)#3-Tb(1)-Tb(1)#4	58.10(3)
O(7)#4-Tb(1)-O(2W)	140.46(2)		

Symmetry transformations used to generate equivalent atoms: #1 = y - 1/2, -x + 1, -z + 3/2; #2 = -x + 1/2, -y + 3/2, z + 1/2; #3 = -y + 1, x, -z + 2; #4 = -x+1, -y + 1, z; #5 = y, -x + 1, -z + 2.

Fig. S2 (a) View of 3D structure of **Tb-DSOA** down the *b*-axis; The sulfonate groups of DSOA⁴⁻ ligands bridge the adjacent grid plane through the Tb–O bond (one oxygen of sulfonate group) to give rise to a 3D-network; (b) 2D sheet-like grid plane built from $[Tb_4(\mu_3-OH)_4]$ clusters linked by the carboxylate groups of the DSOA⁴⁻ ligands; (c) Tetranuclear Tb clusters (H atoms of hydroxyl are omitted).

Fig. S3 H-bond association as potential pathway involving uncoordinated sulfonate oxygen atoms (red), oxygen of aqua ligands and solvent water molecules (green).

Fig. S4 TG plot of as prepared Tb-DSOA.

Fig. S5 Excitation (dotted line, $\lambda_{em} = 542$ nm) and emission spectra (solid line, $\lambda_{ex} = 350$ nm) of pure **Tb-DSOA** solid samples with 2nm slit widths.

Fig. S6 Histogram Comparison of the photoluminescence intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition (542nm) of Mⁿ⁺@Tb-DSOA after immersion in 0.01M Mⁿ⁺ aqueous solution for one day. (M = Na⁺, K⁺, Li⁺, Ag⁺, Mg²⁺, Ba²⁺, Ca²⁺, Pb²⁺, Sn²⁺, Cu²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cd²⁺, Zn²⁺, Mn²⁺, Al³⁺, Cr³⁺, Fe³⁺ respectively) monitored at 350 nm.

Fig. S7 The emission intensity histogram of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition (542nm) of time-dependent Fe³⁺@Tb-DSOA obtained after immersion in 0.01 M Fe³⁺ aqueous solution for different time.

Table S3. The ICP results of Fe³⁺@Tb-DSOA after different immersion time.

Immersion Time	5 min	10 min	30 min	1 h	2 h	5 h	10 h	24 h
Fe/ Tb	1:15.56	1:15.48	1:14.13	1:12.35	1:11.61	1:8.62	1:7.64	1:5.64

Fig. S8 The diffuse reflectance ultraviolet-visible (DR UV–vis) spectra of solid samples of Tb-DSOA and Fe^{3+} @Tb-DSOA treated with 0.01 mol L⁻¹ Fe(NO₃)₃ aqueous solution for 24 h.

Fig. S9 The emission decay curve of Tb-DSOA ($\lambda_{ex} = 350$ nm, $\lambda_{em} = 542$ nm) at 298 K.

Fig. S10 The emission decay curve of Fe³⁺@Tb-DSOA ($\lambda_{ex} = 350$ nm, $\lambda_{em} = 542$ nm) at 298 K.

Fig. S11 The Nyquist plots for Tb-DSOA at 68% relative humidity at different temperatures.

Fig. S12 The Nyquist plots for Tb-DSOA at 85% relative humidity at different temperatures.

Fig. S13 The Nyquist plots for Tb-DSOA at 98% relative humidity in the range of 313–333 K.

Fig. S14 The representative measured Nyquist plots (Red circle) and the fits of impedance data to the equivalent circuit of $CPE_e(R_bCPE_b)(R_{gb}CPE_{gb})$ (green square). (where R_b and R_{gb} is the resistance of proton transfer in the bulk phase and grain boundary, respectively; CPE_b and CPE_{gb} are the constant-phase element in the bulk phase and grain boundary, respectively.)

Fig. S15 Water vapor adsorption/desorption isotherms of **Tb-DSOA**. Filled and open symbols correspond to adsorption and desorption, respectively.

Compound	Ligand	Prominent features	σ / S	RH	Т
Compound	Ligand	/ guest		%	(°C)
Tb-DSOA	disodium-2,2'-disulfonate-	non-coordinating sulfonate oxygen	2.3×10 ⁻⁷	43	100
	4,4'-oxydibenzoic acid	atoms, aqua ligands line channels	4.0×10 ⁻⁷	53	100
		/ lattice water	1.7×10 ⁻⁴	98	100
β-PCMOF2 ¹	trisodium 2,4,6-	Oxygen atoms from SO ₃ ⁻	1.8×10 ⁻⁶	50	85
	trihydroxy-1,3,5-trisulfonate	groups line channels			
	benzene	/ lattice water			
			1.3×10 ⁻³	90	85
$PCMOF2_{1/2}^{1}$	trisodium 2,4,6-	Oxygen atoms from SO_3^- , PO_3^{2-} groups	2.4×10 ⁻⁵	50	85
	trihydroxy-1,3,5-trisulfonate	line channels / lattice water			
	benzene and 1,3,5-		2.1×10^{-2}	90	85
	benzenetriphosphonic acid		2.1/10		
PCMOF-3 ²	1,3,5-benzenetriphosphonate	Aqua ligands and phosphonate oxygen	4.5×10 ⁻⁸	44	25
		atoms line interlayer/ lattice water	3.5×10 ⁻⁵	98	25
Zn(5-sipH)-	5-sulfoisophthalic acid and	non-coordinating sulfonic acid groups	3.9×10 ⁻⁴	60	25
(bpy)]·DMF	4,4'-bipyridine	on the pore surface / DMF and water			
·2H ₂ O ³					

Table S4: Compare proton conductivity of **Tb-DSOA** in this work with that of some CPs orMOFs containing sulfonate groups or sulfone groups, hybrid acid@MOFs as well as Nafion.

[Zn(H ₂ O)(5-	5-sulfoisophthalic acid and	non-coordinating sulfonic acid groups	3.4×10 ⁻⁸	60	25
sipH)-	1,2-di(4-pyridyl)ethyrene	on the pore surface / DMF			
(bpe) _{0.5}]·DM					
F ³					
[Zn ₃ (5-	5-sulfoisophthalic acid and	non-coordinating sulfonic acid groups	8.7×10 ⁻⁵	60	25
sip) ₂ (5-	4,4'-bipyridine	on the pore surface / DMF and DMA			
sipH)(bpy)]∙					
(DMF)·2(D					
MA) ³					
Cu-DSOA ⁴	disodium-2,2'-disulfonate-	non-coordinating sulfonate oxygen	1.9×10 ⁻³	98	85
	4,4'-oxydibenzoic acid	atoms line channels / hydroniums			
Sr-SBBA ⁵	4,4'-sulfobisbenzoic acid	Sulfone group in backbone facilitate H-	4.4×10 ⁻⁵	98	25
		bonding			
[H ₃ O][Mn ₃ (4,4'-sulfonyldibenzoic acid	hydrogen bonded guests	3×10 ⁻⁴	98	34
μ3-		/hydronium ion, DMF and H_2O			
OH)(C ₁₄ H ₈					
$O_6S)_3(H_2O)]$					
(DMF) ⁶					
{Fe(ox)(H ₂	Oxalic acid	Water molecules coordinate	1.3×10 ⁻³	98	25
$O)_{2}$ } ⁷		axially to ferrous ions and			
		form a 1D ordered array of			
H ₂ SO ₄ @MI	Hybrid composite	Inorganic acids inside pores of	6×10 ⁻²	20	80
L-101 ⁸		Cr-MIL-101 / H ₂ SO ₄			
TfOH@MI	Hybrid composite	organic acids inside pores of /	8×10 ⁻²	15	60
L-1019		trifluoromethanesulfonic acid			
Nafion ¹⁰	Polymer namely	-	10-2	98	20-
	perfluorosulfonic membranes				80

References:

1. S. R. Kim, K. W. Dawson, B. S. Gelfand, J. M. Taylor and G. K. H. Shimizu, J. Am. Chem. Soc., 2013, 135, 963–966.

2. J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan and G. K. H. Shimizu, *J. Am. Chem. Soc.*, 2010, **132**, 14055–14057.

3. P. Ramaswamy, R. Matsuda, W. Kosaka, G. Akiyama, H. J. Jeon and S. Kitagawa, *Chem. Commun.*, 2014, **50**, 1144–1146.

4. X.-Y. Dong, R. Wang, J.-B. Li, S.-Q. Zang, H.-W. Hou and T. C. W. Mak, *Chem. Commun.*, 2013, **49**, 10590 –10592.

5. T. Kundu, S. C. Sahoo and R. Banerjee, Chem. Commun., 2012, 48, 4998-5000.

6. S. Bhattacharya, M. Gnanavel, A. J. Bhattacharyya and S. Natarajan, *Cryst. Growth Des.*, 2014, 14, 310–325.

7. T. Yamada, M. Sadakiyo and H. Kitagawa, J. Am. Chem. Soc., 2009, 131, 3144-3145.

8. V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova and V. P. Fedin, *J. Am. Chem. Soc.*, 2012, **134**, 15640–15643.

9. D. N. Dybtsev, V. G. Ponomareva, S. B. Aliev, A. P. Chupakhin, M. R. Gallyamov, N. K. Moroz, B. A. Kolesov, K. A. Kovalenko, E. S. Shutova and Vladimir P. Fedin, *ACS Appl. Mater. Interfaces*, 2014, **6**, 5161–5167.

10. M. Yoon, K. Suh, S. Natarajan and K. Kim, Angew. Chem. Int. Ed., 2013, 52, 2688-2700.