Supporting information for

Flexible supercapacitors based on carbon nanotube/MnO₂ nanotube hybrid porous films for wearable electronic devices

Lianhuan Du,[†] Peihua Yang,[†] Xiang Yu,[‡] Pengyi Liu,[†] Jinhui Song,[§] Wenjie Mai^{†,}*

[†]Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou, Guangdong

510632, China

[‡]Analytical and Testing Center, Jinan University, Guangzhou 510632, China

[§]Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa,

AL 35487, USA

Address corresponding to wenjiemai@gmail.com (WJM)

Capacitance compared with previous reports:

Single electrode

In the conventional way, the areal capacitance $({}^{C_a})$ of the electrode can be calculated by the following equations according to the discharge curves:

$$C_a = \frac{I\Delta t}{A\Delta U}$$

where *I* is the discharge current, Δt is the discharge time, *A* is the effective area of the working electrode and ΔU is the potential window. Therefore, in this work, the areal capacitance of the freestanding CNT/MnO₂ NT hybrid electrode calculated by the above conventional method is 295.3 mF cm⁻² at a current density of 0.5 mA cm⁻² and 229.5 mF cm⁻² at a current density of 1 mA cm⁻². These values are better than that reported in previous, as shown in Table S1.

Table S1 Comparison of the areal capacitance of the freestanding $CNT/MnO_2 NT$ hybrid electrode with that in previous reports.

Electrode materials	Areal capacitance (mF cm ⁻²)	Reference
Freestanding CNT/MnO ₂ NT hybrid	295.3 (0.5 mA cm ⁻²) 229.5 (1 mA cm ⁻²)	This work
Freestanding VN/CNT hybrid	178 (1.1 mA cm ⁻²)	1
Hydrogenated MnO ₂ nanorods	220 (0.75 mA cm ⁻²)	2
Functionalized carbon nanotube	150 (1 mA cm ⁻²)	3
Hydrogenated ZnO@ZnO-doped MnO ₂ nanocables	138.7 (1 mA cm ⁻²)	4
MnO ₂ nanowires & Fe ₂ O ₃ nanotubes	150.0 (1 mA cm ⁻²) 180.4 (1 mA cm ⁻²)	5
Hydrogenated TiO ₂ @MnO ₂ nanowires	70 (2 mA cm ⁻²)	6

SC device

Similarly, the volumetric capacitance $({}^{C_{v}})$ of the whole device can be calculated by the following equations according to the discharge curves:

$$C_v = \frac{I\Delta t}{V\Delta U}$$

where *I* is the discharge current, Δt is the discharge time, *V* is the volume of the whole SC device and ΔU is the voltage. Hence, using the above conventional method, the value of this work is 7.7 F cm⁻³ at 16 mA cm⁻³, which is much higher than that of other solid-state SC devices reported in previous papers, as listed in Table S2.

1

Table S2 Comparison of the volumetric capacitance of the SC device with that in previous reports.

Supercapacitor Devices	Volumetric capacitance (F cm ⁻³)	Reference
Freestanding CNT/MnO ₂ NT hybrid based SC	7.7	This work
VN/CNT hybrid based SC	7.9	1
H- MnO ₂ & RGO based asymmetric SC	0.72	2
Functionalized carbon nanotube based SC	3.0	3
MnO ₂ nanowires & Fe ₂ O ₃ nanotubes based asymmetric SC	1.5	5
H-TiO ₂ @MnO ₂ & H-TiO ₂ @C based asymmetric SC	0.71	6
Worm-like MnO ₂ nanowries based SC	0.44	7
NiF ₂ based SC	3.2	8
MnO ₂ nanotubes based SC	4.4	9
MnO ₂ & Fe ₂ O ₃ based asymmetric SC	1.2	10

Fig. S1 (a) STEM image of a MnO₂ nanotube and EDS line scan curves of elements (b) Mn and (c) O along the line shown in the leftmost panel.

Fig. S2 XPS spectra of (a) Mn 3s, (b) Mn 2p and (c) O 1s collected from the MnO₂ NTs. As report in previous,^{11, 12} the oxidation state of element Mn can be determined from the binding energy width (Δ E) between the separated Mn 3s peaks caused by multiple splitting. By reference to the Δ E data of 4.78, 5.41, 5.50 and 5.79 eV acquired from genuine samples of MnO₂, Mn₂O₃, Mn₃O₄ and MnO, respectively, the possible valence of Mn in this samply (Δ E=4.84 eV) is +3.95. Mn 2p3/2 and Mn 2p1/2 peaks were located at 642.0 and 653.9 eV, which are consistent with the previous reported values for MnO₂. The peaks at 529.8 and 531.4 eV can be indexed to the oxygen bond of Mn-O and Mn-OH, respectively.⁵

Fig. S3 (a) CV curves collected at different scan rates and (b) Galvanostatic charge-discharge curves at various current densities for hard MnO_2 NTs electrodes.

Fig. S4 Nyquist plots of the CNT/MnO₂ NT hybrid films with different weight percentages of MnO_2 NTs.

Fig. S5 Comparison study among the flexible CNT/MnO₂ NT hybrid electrodes with different thickness: (a) CV curves measured at 10 mV s⁻¹ and (b) Galvanostatic charge-discharge curves at 1 mA cm⁻². These films have the same weight percentage of MnO₂ (57 wt%).

Fig. S6 Electrochemical performance of the flexible solid-state SCs based on freestanding $CNT/MnO_2 NT$ hybrid electrodes, CV curves collected at various scan rates.

Notes and references

- 1. X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo and J. Zhou, *Adv. Mater.*, 2013, **25**, 5091-5097.
- 2. T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu and Y. Tong, *Nano Energy*, 2014, **8**, 255-263.
- 3. X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi and J. Zhou, *Nano Energy*, 2014, **6**, 1-9.
- 4. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, *ACS Nano*, 2013, **7**, 2617-2626.
- 5. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong and Z. L. Wang, *Nano Lett.*, 2014, 14, 731-736.
- X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong and Y. Li, *Adv. Mater.*, 2013, 25, 267-272.
- 7. P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue, C. P. Wong, X. Cai, S. Tan and W. Mai, *J. Mater. Chem. A*, 2014, **2**, 595-599.
- 8. Y. Yang, G. Ruan, C. Xiang, G. Wang and J. M. Tour, J. Am. Chem. Soc., 2014, 136, 6187-6190.
- 9. F. Grote, R.-S. Kühnel, A. Balducci and Y. Lei, *Appl. Phys. Lett.*, 2014, **104**, 053904.
- 10. X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M. S. Balogun and Y. Tong, *Adv. Mater.*, 2014, **26**, 3148-3155.
- 11. Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi and J. Liu, Nano Lett., 2012, 12, 4206-4211.
- 12. M. Chigane and M. Ishikawa, J. Electrochem. Soc., 2000, 147, 2246-2251.