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Fig. S1. XRD pattern of a-WNP. a typical wide peak is exhibited assigned to the

amorphous structure of a-WNP.
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Fig. S2. High revolution XPS spectrums of Ni 2p, P 2p and W 4f.
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The onset-potential for HER was obtained from Tafel plot.' For exmple, the
semi-log plot of a-WNP in the region of low current densities as shown in Fig. S3
shows a linear relationship below - 51 mV but starts to deviate above - 49 mV.
Therefore, -50 mV was chosen as the onset potential for a-WNP. The same method

was applied on determining the overpotential for other samples in the paper.

0.00_% o a'WNP
= (o)
=
= 3
4 o -0.051V
=
= -0.05
= Oo
2 ©-0-o_
b ()-~c)
A~ -0.049 V \O\o
00—
o
-0.10 . : : ——
0.01 0.1

log(j / mA c¢m™)

Fig. S3. The Tafel plot of a-WNP in the region of low current densitiy.
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Table S1. A summarized comparison of some reported HER catalysts and a-WNP in

acidic electrolyte.

nmv)@s n(mV)@20 Tafel
Catalyst 2 2 1 Reference
mA cm mA cm slope(mVdec™)
Ni,P 110 130 46 2
MoS,/rtGO 130 170 41 3
Ni/NiO/CoSe,
. 90 140 39 4
nanocomposite
defect-rich MoS,
170 210 50 5
nanosheets
WS,/rGO 240 280 58 6
MoP network 110 150 54 7
MoS,/graphene/Ni
120 160 43 8
foam
MoP 125 160 53 9
a-WNP 75 110 39 This work
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Determine of the turnover frequency (TOF):
The number of active sites was firstly taken into account and obtained as follow: CV
measurements were carried out in neutral PBS solution (pH = 7). Then, the absolute
components of the voltammetric charges (cathodic and anodic) reported during one
single blank measurement was added. Assuming a one electron redox process, this
absolute charge was divided by two. The value was then divided by the Faraday
constant to get the number of active sites (n) of the a-WNP electrode.

The TOF(s") was calculated following equation:
TOF = 1/2nF
where [ is the current (A) during the LSV measurement in 0.5 M H,SOy, F is Faraday
constant (96485 C mol™) and # is the number of active sites (mol). The factor 1/2
arrives by taking into account that two electrons are required to form one hydrogen

10,11
molecule from two protons.
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The electrochemical active surface area (EASA) was calculated according to the he
electrochemical double-layer capacitance with a blank glassy carbon electrode (GCE)
as reference. EASA of GCE was obtained using the following equation: >
i,=0.4463 x 107 x n*? x F? x A x Cg" x D" x v x (RT)
where n is the number of electrons transferred (ferrocyanide, n=1), F' is Faraday’s
constant (96485 C mol™), R is the gas constant (8.314 J mol’ K™), T is the
temperature (298 K), CR* (mol L") is the initial ferrocyanide concentration, and v is
the CV scan rate (0.05 V s-1). The diffusion coefficient (DR) of ferrocyanide was
based on reference data'? (3.7 x 10°® cm? ™), and the calculated EASA of the GCE
was 0.2 cm’.

The EASA of the porous N/C electrodes was calculated using a double-layer
capacitor in Fig. S4 and the following equation: "
C=Ax(&xg)/d=(I1xdV)/vxmxV
where ¢, is the electrolyte dielectric constant, g is the dielectric constant of the
vacuum, d is the effective thickness of the double layer (charge separation distance),
A is the EASA, I is the response current density, V is the potential (V), v is the
potential scan rate, and m is the mass of the catayst in the electrodes. the EASA of
NixP based electrode can be calculated using the equation: A;/A,=C,/C, (A, is EASA

of glassy carbon electrode, and A, is EASA of the catalyst modified electrode). The

results are summarized in Table S2.
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Fig. S4. cyclic voltammograms of above catalysts at different scan rates of 2, 10, 50,

100 and 200 mV s in 0.1 M KOH.
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Table S2. Calculated EASA of the four catalysts.

catalyst EASA (m* g™)
WNPTF 9
a-NP 17
c-WNP-400 13.5
a-WNP 15
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Fig. S5. Polarization curves of the catalysts in 0.5 M H,SOy; the current densities are
normalized by the mass loading.
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Fig. S6. Steady-state chronoamperometric curve of a-WNP and a-NP for 10000 s at
an applied potential of - 0.1 V vs. RHE in 0.5 M H,SOs.
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Fig. S7. An optical photograph of the collected H,SO4 electrolyte after sweeping
between - 0.2 V to + 0.2 V for 1000 cycles by using the above three electrode as
anode.
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Fig. S7. Polarization curves of the a-WNP in different content of W.
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Fig. S8. Polarization curves of the a-WNP deposited for different length of time, the

current densities are normalized by the geometrical area.
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Fig. S9. CVs of the a-WNP deposited on Ni foam for 3, 10 and 15 min in 0.1 M KOH
with a scan rate of 100 mV s'. The decrease of electrochemical double-layer charged

current density with the extend of the reaction time indicates a decline of EASA.
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Fig. S10. Polarization curves of the Ni foam, WNPTF, a-NP, c-WNP-400, a-WNP

and Pt/C catalysts in 1.0 M KOH.
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Fig. S11. Tafel plot of a-WNP in1.0 M KOH.
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Table S3. Comparison of HER performance in alkaline media for a-WNP with other

HER electrocatalysts.
talvst nMmV)@5mA n(mV)@20 mA Tafel Reference
catalys cm’” cm’” slope(deec'l)
Mo,C 170 210 54 14
MoB 210 240 59 14
Ni,P 150 200 - 2
Co,P 200 250 129 10
a-WNP 110 180 98 this work
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Fig. S11. Steady-state chronoamperometric curve of a-WNP and a-NP for 10000 s at
an applied potential of - 0.1 V vs. RHE in 1.0 M KOH.
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Fig. S12. EIS spectra of the a-WNP modified electrode with the binder of Nafion,
PVDF and binder-free direct deposit at the overpotential of 0.2 V.
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Fig. S13. SEM image of WNPTF on Ni foam. The dense films could be observed
which lead to the decrease of specific area and less active sites exposed to catalyze

hydrogen generation.
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