Supporting Information

Bulk-heterojunction pushes photoresponse of perovskite solar

cells to 970 nm

Chuantian Zuo^{*a,b*} and Liming Ding*^{*a*}

^a National Center for Nanoscience and Technology, Beijing 100190, China.
 E-mail: Ding@nanoctr.cn
 ^b University of Chinese Academy of Sciences, Beijing 100049, China.

Synthesis and characterization

PDPP3T was synthesized using reported method.^[1] Absorption spectra of films were recorded on a Shimadzu UV-1800 spectrophotometer. The thicknesses of films were measured using a Tencor D-120 profilometer.

Solar cell fabrication and characterization

Patterned ITO glass with a sheet resistance of 15 Ω sq⁻¹ was cleaned by ultrasonics in detergent, deionized water, acetone, isopropanol sequentially and then treated with UV-ozone for 10 min. A 30 nm thick PEDOT layer was formed on ITO glass by spin coating an aqueous dispersion (PEDOT:PSS, CleviosTM P VP AI 4083) onto ITO glass (4000 rpm for 30 s). PEDOT substrates were dried at 150 °C for 10 min, and then transferred into a N₂ glovebox. For BHJ cells, a PDPP3T:PC₆₁BM blend solution (10~24 mg/mL in chlorobenzene with 4 vol% DIO) was spin coated onto PEDOT at 1200 rpm for 60s. For perovskite cells, the precursor solution (10~19 wt%) was spin coated onto PEDOT at 3000 rpm for 60 s and heated at 100 °C for 30 s. Then PC₆₁BM solution (20 mg/mL in chlorobenzene) was spin coated onto CH₃NH₃PbI₃

layer at 1500 rpm for 30 s. For the integrated solar cells, a PDPP3T:PC₆₁BM blend solution (10~24 mg/mL in chlorobenzene with 4 vol% DIO) was spin coated onto CH₃NH₃PbI₃ layer at 1200 rpm for 60s. Finally Ca (10 nm) and Al (100 nm) was deposited onto PC₆₁BM layer or the blend layer through a shadow mask in vacuo (10⁻⁴ Pa). The effective area for the cells is 4 mm². *J-V* curves were measured using a computerized Keithley 2420 SourceMeter. Device characterization was performed in air using a solar simulator (Newport 91159A, AM 1.5G, 100 mW/cm²). The illumination intensity was determined using a monocrystalline silicon cell (Oriel 91150, 2×2 cm) calibrated by NREL. EQE spectra were measured using a QE-R3011 system (Enli Technology).

Fig. S1 The energy level diagram for the integrated cells.^[2,3]

Fig. S2 *J-V* curves (a) and EQE spectra (b) for BHJ cells, perovskite cells and the integrated cells. The thicknesses for $CH_3NH_3PbI_3$ layer and PDPP3T:PC₆₁BM (1:2) layer are 70 nm and 130 nm, respectively.

Table S1 Performance data for BHJ cells, perovskite cells and the integrated cells.

Cell type	V _{oc}	$J_{ m sc}$	Cal. $J_{\rm sc}$	FF	PCE
	[V]	[mA/cm ²]	[mA/cm ²]	[%]	[%]
BHJ cell	0.67	8.82	8.76	67.07	3.96
Perovskite cell	0.82	7.49	7.42	74.08	4.55
Integrated cell	0.79	10.86	10.89	59.26	5.08

Fig. S3 *J-V* curves (a) and EQE spectra (b) for the integrated solar cells with different PDPP3T:PC₆₁BM ratio.

Table S2 Performance data for the integrated solar cells^a with different D/A ratio.

PDPP3T:PC ₆₁ B	$V_{\rm oc}$	$J_{ m sc}$	Cal. $J_{\rm sc}$	FF	PCE
М	[V]	[mA/cm ²]	[mA/cm ²]	[%]	[%]
0:1 ^b	0.90	13.09	12.78	80.33	9.46
1:2°	0.86	12.67	12.55	60.84	6.63
1:4°	0.87	13.12	12.91	69.37	7.92
1:6°	0.88	12.78	12.62	73.72	8.29

^a thickness for perovskite layer: 150 nm

 $^{\rm b}$ thickness for $PC_{61}BM$ layer: 80 nm

^c thickness for blend layer: 130 nm

Fig. S4 (a) J-V curves for a perovskite solar cell (ITO/PEDOT/150nm CH₃NH₃PbI₃/80nm PC₆₁BM/Ca/Al) under forward (from short circuit to open circuit) and reverse (from open circuit to short circuit) scans with bias step of 0.013 V and scan rate of 0.13 V s⁻¹. (b) J-V curves for an integrated solar cell (ITO/PEDOT/150nm CH₃NH₃PbI₃/80nm PDPP3T:PC₆₁BM (1:4)/Ca/Al) under the same measurement conditions.

References

- [1] K. H. Hendriks, G. H. L. Heintges, V. S. Gevaerts, M. M. Wienk and R. A. J. Janssen, *Angew. Chem. Int. Ed.*, 2013, **52**, 8341.
- [2] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, *Nat. Commun.*, 2013, 4, 2761.
- [3] J. W. Jung, F. Liu, T. P. Russell and W. H. Jo, Energy Environ. Sci., 2013, 6, 3301.