Supporting Information

Panchromatic Ru(II) Sensitizers Bearing Single Thiocyanate for High Efficiency Dye Sensitized Solar cells

Sheng-Wei Wang, ${ }^{\text {a }}$ Chun-Cheng Chou, ${ }^{a}$ Fa-Chun Hu, ${ }^{a}$ Kuan-Lin Wu, ${ }^{\text {a }}$ Yun Chi, ${ }^{\text {a, }}$ * John N. Clifford, ${ }^{\mathrm{b}}$ Emilio Palomares, ${ }^{\mathrm{b}, \mathrm{c}}$ Shih-Hung Liu, ${ }^{\text {d Pi-Tai Chou, }}{ }^{\mathrm{d}, *}$ Tzu-Chien Weie,* and Ting-Yun Hsiao ${ }^{f}$

Experimental section

General Procedures. All reactions were performed under nitrogen. Solvents were distilled from appropriate drying agents prior to use. Commercially available reagents were used without further purification. The required azolate ancillaries were synthesized according to the methods documented in literature. ${ }^{1}$ All reactions were monitored by TLC with pre-coated silica gel plates (Merck, 0.20 mm with fluorescent indicator UV254). Compounds were visualized with UV irradiation at 254 or 365 nm . Flash column chromatography was carried out using silica gel obtained from Merck (230-400 mesh). Mass spectra were obtained on a JEOL SX-102A instrument operating in electron impact (EI) or fast atom bombardment (FAB) mode. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker-400 or INOVA-500 instrument; chemical shifts are quoted with respect to the internal standard tetramethylsilane. Elemental analysis was carried out with a Heraeus CHN-O Rapid Elementary Analyzer. Photophysical data were obtained using an Edinburgh Fluorescence spectrometer FLS928P. Details of the synthetic protocols for the tri-dentate ancillary chelates and the procedures for the DSC cell fabrication and measurement are all given in the electronic supporting information.

Synthesis of PRT-21-E1

At first, the Ru-precursor was synthesized from 4,4'4"-triethoxycarbonyl$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ by the general procedure. ${ }^{2}$ Yield: 110 mg , 83\%. After then, a mixture of Ru-precursor (100 $\mathrm{mg}, \quad 0.15 \mathrm{mmol}$), 4-(5-hexylthiophen-2-yl)-2-(3-(trifluoromethyl)-1H-pyrazol-5yl)pyridine ${ }^{3}$ ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$), and KOAc ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 30 mL of toluene was heated to reflux for 6 h . After evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=10: 1\right)$, yielding PRT-21E1 (117 mg, 81\%).

Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.90\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.82$ $(\mathrm{s}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 2 \mathrm{H}), 7.98\left(\mathrm{~d}, \mathrm{~J}_{H H}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.71\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.62\left(\mathrm{~d}, \mathrm{~J}_{H H}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.91\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~s}$, $1 \mathrm{H}), 4.48\left(\mathrm{q}, \mathrm{J}_{H H}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.39\left(\mathrm{q}, \mathrm{J}_{H H}=7.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.98\left(\mathrm{t}, \mathrm{J}_{H H}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.83$ ~ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.44 \sim 1.27(\mathrm{~m}, 15 \mathrm{H}), 0.93 \sim 0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): \delta-60.40(\mathrm{~s}, 3 \mathrm{~F})$.

Synthesis of PRT-21-E2

A mixture of PRT-21-E1 ($100 \mathrm{mg}, 0.10 \mathrm{mmol}$) and KSCN ($100 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 30 mL of DMF was heated to reflux for 2 h . After evaporating the solvent, the residue
was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=20: 1\right)$. Yield: PRT-21-E2 (99 mg, 66\%).

Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.40\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.81$ $(\mathrm{s}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H}), 7.92\left(\mathrm{~d}, \mathrm{~J}_{H H}=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.75\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.66\left(\mathrm{dd}, \mathrm{J}_{H H}=5.8,2.0 \mathrm{~Hz} 1 \mathrm{H}\right), 7.56\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.92\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74$ $(\mathrm{s}, 1 \mathrm{H}), 4.62\left(\mathrm{q}, \mathrm{J}_{H H}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.46\left(\mathrm{q}, \mathrm{J}_{H H}=7.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 2.92\left(\mathrm{t}, \mathrm{J}_{H H}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.78 \sim 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59 \sim 1.32(\mathrm{~m}, 15 \mathrm{H}), 0.91\left(\mathrm{t}, \mathrm{J}_{H H}=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-60.54(\mathrm{~s}, 3 \mathrm{~F})$.

Synthesis of PRT-21

The solid of PRT-21-E2 ($99 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in a mixture of acetone (30 mL) and 2 M NaOH solution (2 mL) and stirred at room temperature overnight. Finally, the solution was concentrated, and the solid dissolved in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and titrated with 2 N HCl to pH 3 to afford a black precipitate. This black product was washed with $\mathrm{H}_{2} \mathrm{O}$ and acetone in sequence, yielding PRT-21 (70 mg, 78\%).

Spectral data of PRT-21: MS (FAB, $\left.{ }^{102} \mathrm{Ru}\right): \mathrm{m} / \mathrm{z} 903(\mathrm{M}+1)^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , d_{6}-DMSO, 298 K): $\delta 9.23(\mathrm{~s}, 2 \mathrm{H}), 9.20\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.09(\mathrm{~s}, 2 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H})$, $8.05\left(\mathrm{~d}, \mathrm{~J}_{H H}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.0\left(\mathrm{~d}, \mathrm{~J}_{H H}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.95\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76(\mathrm{~s}$, $1 \mathrm{H}), 7.84\left(\mathrm{~d}, \mathrm{~J}_{H H}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.07\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.91\left(\mathrm{t}, \mathrm{J}_{H H}=7.2\right.$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.72 ~ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37$ ~ $1.29(\mathrm{~m}, 6 \mathrm{H}), 0.87\left(\mathrm{t}, \mathrm{J}_{H H}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{RuS}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 47.69 ; \mathrm{N}, 10.25 ; \mathrm{H}, 3.79$. Found: C, 48.14; $\mathrm{N}, 10.36 ; \mathrm{H}$, 4.27.

Synthesis of PRT-23-E1

At first, the (Et-Qbpy) RuCl_{3} was synthesized from diethyl 6-(6-(t-butyl)quinolin-8-yl)-[2,2'-bipyridine]-4,4'-dicarboxylate (Et-Qbpy, $200 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ by the general procedure. ${ }^{2}$ Yield: $240 \mathrm{mg}, 84 \%$. After then, a mixture of (Et-Qbpy)RuCl ${ }_{3}$ ($100 \mathrm{mg}, 0.14 \mathrm{mmol}$), 4-(5-hexylthiophen-2-yl)-2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine ${ }^{3}$ ($60 \mathrm{mg}, 0.16 \mathrm{mmol}$), and KOAc (30 mg , 0.3 mmol) in 30 mL of toluene was heated to reflux for 6 h . After evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate = 8:1), yielding PRT-23-E1 (110 mg, 76\%).

Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.80\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.79$ $(\mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.96 \sim 7.93(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~s}$, $1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.61 \sim 7.52(\mathrm{~m}, 3 \mathrm{H}), 7.01\left(\mathrm{dd}, J_{H H}=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90\left(\mathrm{~d}, J_{H H}=3.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 4.55\left(\mathrm{q}, J_{H H}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.43\left(\mathrm{q}, J_{H H}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.90\left(\mathrm{t}, J_{H H}=\right.$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76 \sim 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.41 \sim 1.22(\mathrm{~m}, 12 \mathrm{H}), 0.92 \sim 0.81(\mathrm{~m}$, 3H). ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl 3 , 298 K): $\delta-60.63$ (s, 3F).

Synthesis of PRT-23-E2

A mixture of PRT-23-E1 (110 mg, 0.14 mmol$)$ and KSCN (115 mg, 1.2 mmol) in 30 mL of DMF was heated to reflux for 2 h . After evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ethyl acetate $\left.=10: 1\right)$,
yielding PRT-23-E2 (81 mg, 68\%).
Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-Acetone, 298 K): $\delta 9.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $9.10(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.78\left(\mathrm{~d}, J_{H H}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.53\left(\mathrm{dd}, J_{H H}=5.2,1.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 8.42\left(\mathrm{~d}, J_{H H}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.26\left(\mathrm{~d}, J_{H H}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20\left(\mathrm{~d}, J_{H H}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.16\left(\mathrm{~d}, J_{H H}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.91 \sim 7.88(\mathrm{~m}, 2 \mathrm{H}), 7.80\left(\mathrm{dd}, J_{H H}=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.35(\mathrm{dd}$, $\left.J_{H H}=8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.05\left(\mathrm{~d}, J_{H H}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.57\left(\mathrm{q}, J_{H H}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.43\left(\mathrm{q}, J_{H H}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.97\left(\mathrm{t}, J_{H H}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.82 \sim 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H})$, 1.53 ~ $1.29(\mathrm{~m}, 12 \mathrm{H}), 0.93$ ~ $0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, d d_{6}-Acetone, 298 K$): \delta-$ 60.76 (s, 3F).

Synthesis of PRT-23

The solid of PRT-23-E2 (81 mg, 0.08 mmol) was dissolved in a mixture of acetone (30 mL) and 2 M NaOH solution (2 mL) and stirred at room temperature overnight. Finally, the solution was concentrated, and the solid dissolved in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and titrated with 2 N HCl to pH 3 to afford a black precipitate. This black product was washed with $\mathrm{H}_{2} \mathrm{O}$ and acetone in sequence, yielding PRT-23 ($63 \mathrm{mg}, 80 \%$).

Spectral data of PRT-23: MS (FAB, ${ }^{102 R u): ~ m / z ~} 966(\mathrm{M}+1)^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, d_{6}-DMSO, 298 K): $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 9.01\left(\mathrm{~d}, J_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.61$ $(\mathrm{s}, 1 \mathrm{H}), 8.43\left(\mathrm{~d}, \mathrm{~J}_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.94 \sim 7.90(\mathrm{~m}$, $3 \mathrm{H}), 7.74\left(\mathrm{~d}, J_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37 \sim 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 2.88\left(\mathrm{t}, J_{H H}=8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 1.65(m, 2H), $1.53(\mathrm{~s}, 9 \mathrm{H}), 1.34 \sim 1.28(\mathrm{~m}, 6 \mathrm{H}), 0.86\left(\mathrm{t}, J_{H H}=8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{d}_{6}$-DMSO, 298 K): $\delta-56.01$ ($\mathrm{s}, 3 \mathrm{~F}$). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{RuS}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 53.99; N, 9.79; H, 4.43. Found: C, 54.23; N, 9.92; H, 4.21.

Synthesis of PRT-24-E1

A mixture of (Et-Qbpy) RuCl_{3} (100 mg, 0.14 mmol), 4-(5-(hexylthio)thiophen-2-yl)-2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine ${ }^{1}$ (60 mg, 0.15 mmol), and KOAc ($30 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 30 mL of toluene was heated to reflux for 6 h . After evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=8: 1\right)$, yielding PRT-24-E1 (116 mg, 78\%).

Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.84\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.79$ $(\mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 2 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.95\left(\mathrm{~d}, J_{H H}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.92\left(\mathrm{~d}, J_{H H}=\right.$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.61\left(\mathrm{~d}, J_{H H}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.16\left(\mathrm{~d}, J_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02\left(\mathrm{dd}, J_{H H}=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.56\left(\mathrm{q}, J_{H H}\right.$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43\left(\mathrm{q}, \mathrm{J}_{H H}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.93\left(\mathrm{t}, J_{H H}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.73 \sim 1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 9 \mathrm{H}), 1.42 \sim 1.24(\mathrm{~m}, 12 \mathrm{H}), 0.91 \sim 0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl 3,298 $K): \delta-60.66(s, 3 F)$.

Synthesis of PRT-24-E2

A mixture of PRT-24-E1 (116 mg, 0.11 mmol$)$ and KSCN (102 mg, 1.1 mmol) in 30 mL of DMF was heated to reflux for 2 h . After evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ethyl acetate $\left.=10: 1\right)$, yielding PRT-24-E2 (77 mg, 65\%)

Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.28$ (d, $\mathrm{J}_{H H}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.77 $(\mathrm{s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.31\left(\mathrm{~d}, \mathrm{~J}_{H H}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.03\left(\mathrm{~d}, \mathrm{~J}_{H H}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.63\left(\mathrm{~d}, \mathrm{~J}_{H H}=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.58\left(\mathrm{dd}, \mathrm{J}_{H H}=5.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{~d}, \mathrm{~J}_{H H}=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.04\left(\mathrm{dd}, \mathrm{J}_{H H}=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.59\left(\mathrm{q}, \mathrm{J}_{H H}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.45\left(\mathrm{q}, \mathrm{J}_{H H}\right.$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94\left(\mathrm{t}, \mathrm{J}_{H H}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.73 \sim 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.46 \sim 1.22$ (m, 12H), $0.91 \sim 0.86$ (m, 3H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ-60.66 (s, 3F).

Synthesis of PRT-24

The solid of PRT-24-E2 ($81 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissolved in a mixture of acetone (30 mL) and 2 M NaOH solution (2 mL) and stirred at room temperature overnight. Finally, the solution was concentrated, and the solid dissolved in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and titrated with 2 N HCl to pH 3 to afford a black precipitate. This black product was washed with $\mathrm{H}_{2} \mathrm{O}$ and acetone in sequence, yielding PRT-24 ($64 \mathrm{mg}, 83 \%$).

Spectral dataof PRT-24: MS (FAB, $\left.{ }^{102} \mathrm{Ru}\right): \mathrm{m} / \mathrm{z} 998(\mathrm{M}+1)^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}-$ DMSO, 298 K): $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 9.06\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}$, $1 \mathrm{H}), 8.47\left(\mathrm{~d}, \mathrm{~J}_{H H}=8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.28\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.04 \sim$ $7.99(\mathrm{~m}, 2 \mathrm{H}), 7.93\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76\left(\mathrm{~d}, \mathrm{~J}_{H H}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40 \sim 7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 2.99\left(\mathrm{t}, \mathrm{J}_{H H}=8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43 \sim 1.25(\mathrm{~m}, 6 \mathrm{H})$, $0.87\left(\mathrm{t}, \mathrm{J}_{H H}=8 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, 298 K): δ-58.86 (s, 3F). Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{RuS}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.31 ; \mathrm{N}, 9.49 ; \mathrm{H}, 4.29$. Found: C, 52.11; $\mathrm{N}, 9.81$; H, 4.66

TD-DFT Calculation

All calculations were performed by Gaussian 09 program. Their ground state
structures were first optimized with density functional theory (DFT) at B3LYP/LANL2DZ (Ru) and 6-31G* (H, C, N, O, F, S) level. The optimized structures were then used to calculate 60 lowest singlet energy optical excitations using the time-dependent density functional theory (TD-DFT) method. Their lowest ground triplet state energies were also calculated. A polarizable continuum model (PCM) in Gaussian 09 was applied using dimethylformamide (DMF) as the solvent.

Photovoltaic Characterization.

Photovoltaic measurements were tested under a class-AAA solar simulator (Model 11016A, Sun 3000, ABET Technologies) equipped with a 550 W xenon light source and water-cooling stage ($25^{\circ} \mathrm{C}$). The output power density was calibrated to be $100 \mathrm{~mW} / \mathrm{cm}^{2}$ using a certificated KG-5 Si reference cell and with a circular aperture of 8 mm . The current-voltage characteristic of each cell was obtained with adopting 4-wire sense mode, delay time set as 100 ms and bias scan from shortcircuit to open-circuit by using a Keithley digital source meter (Model 2400). The spectra of incident photon-to-current conversion efficiency (IPCE) were calculated with the equation of $1240 \cdot J_{S C}(\lambda) /\left(\lambda \cdot P_{\text {in }}(\lambda)\right)$ where $J_{S C}$ is the short-circuit current density under each monochromatic illumination in unit of $A / \mathrm{cm}^{2}, \lambda$ is the wavelength of incident monochromatic light in unit of nanometer, and $P_{\text {in }}$ is the monochromatic light intensity in unit of $\mathrm{W} / \mathrm{cm}^{2}$ and were plotted as a function of incident wavelength with an increment of 10 nm . The current was pre-amplified by a current amplifier (SR570) and measured by Keithley 2400 . It should be noted that 10 values of $J_{S C}$ (interval 50 ms) were collected sequentially after illuminating the device for 3 seconds and then averaged for calculation of IPCE. A 300 W Xe lamp (Model 6258, Newport Oriel) combined with an Oriel cornerstone 260 1/4 m monochromator (Model 74100) provided a device under test with a monochromatic beam (dc mode). The beam power intensity was calibrated with a power meter (Model 1936-C, Newport) equipped with a Newport 818-UV photodetector.

Transient Absorption Spectroscopy, Charge Extraction and Transient Photovoltage Measurements

Transient absorption spectroscopy (TAS) measurements were carried out on 1 cm^{2} DSC devices on a system similar to that used by Durrent and co-workers. ${ }^{4}$ Charge extraction (CE) and transient photovoltage (TPV) measurements were carried out on optimized $0.16 \mathrm{~cm}^{2}$ DSC devices using a system similar to that empolyed by O'Regan et al. ${ }^{5}$

Electrical Impedance Measurements

Electrical impedance experiments were carried out with a PARSTAT 2273 (AMETEK Princeton Applied Research, U.S.A.) electrochemical workstation in dark under forward bias, with a frequency range of $0.1-100 \mathrm{kHz}$ and a potential modulation of 10 mV .

Charge extraction and intensity-modulated photovoltage spectroscopy

Charge extraction (CE) was measured with the PGSTAT302N electrochemical workstation (Autolab) at an open-circuit condition for the photovoltage of the device to attain a steady state. The red light-emitting diode (LED, 627 nm) was switched off while the device was simultaneously switched to a short-circuit condition to measure the excess charges generated in the film.6, 7 Intensity-modulated photovoltage spectroscopy (IMVS) measurement was conducted using the same electrochemical workstation equipped with a frequency response analyzer (FRA) to drive a red light emitting diode. The analysis of the photovoltage response of the cells was conducted in the frequency range of $10^{4}-1 \mathrm{~Hz}$ and LED supplied the AC (modulation depth 10\%) perturbation current superimposed on the DC current.

Table S1. The wavelengths, transition probabilities and charge transfer characters of the singlet optical transitions in selected states with oscillator strength >0.03 over 300 nm for PRT-21 in DMF.

State	[$\lambda_{\text {cal }}(\mathrm{nm})$	f	Assignments	MLCT
T_{1}	812.8	0	HOMO \rightarrow LUMO(95\%)	34.66\%
S_{1}	738	0.0317	HOMO \rightarrow LUMO(96\%)	35.02\%
S_{2}	613.7	0.0004	HOMO-2 \rightarrow LUMO(88\%) HOMO-4 \rightarrow LUMO(6\%)	35.22\%
S_{4}	531	0.0693	HOMO \rightarrow LUMO+1(61\%) HOMO-1 \rightarrow LUMO(30\%)	34.33\%
S_{5}	519.6	0.0351	HOMO-1 \rightarrow LUMO+1(95\%)	33.25\%
S_{7}	469.6	0.1162	HOMO \rightarrow LUMO+2(95\%)	42.39\%
S_{11}	431.2	0.0486	HOMO \rightarrow LUMO+4(57\%) HOMO-1 \rightarrow LUMO+2(39\%)	39.10\%
S_{16}	399.8	0.0609	HOMO-3 \rightarrow LUMO+1(66\%) HOMO-6 \rightarrow LUMO(23\%)	3.03\%
S_{17}	398.8	0.1723	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO(47\%) HOMO-3 } \rightarrow \text { LUMO }+1(33 \%) \\ & \text { HOMO- } 2 \rightarrow \text { LUMO }+4(8 \%) \end{aligned}$	13.78\%
S_{20}	377.7	0.1869	$\begin{aligned} & \text { HOMO-4 } \rightarrow \text { LUMO }+1(68 \%) \quad \text { HOMO-2 } \rightarrow \text { LUMO }+4(17 \%) \\ & \text { HOMO-5 } \rightarrow \text { LUMO }+1(10 \%) \end{aligned}$	18.63\%
S_{21}	366.6	0.1835	$\begin{array}{ll} \text { HOMO-5 } \rightarrow \text { LUMO+1(34\%) } & \text { HOMO-2 } \rightarrow \text { LUMO+4(28\%) } \\ \text { HOMO-4 } \rightarrow \text { LUMO+1(21\%) } & \text { HOMO-2 } \rightarrow \text { LUMO+1(6\%) } \end{array}$	26.83\%
S_{24}	355.7	0.0792	HOMO-5 \rightarrow LUMO+1(46\%) HOMO-2 \rightarrow LUMO+4(30\%) HOMO-6 \rightarrow LUMO(8\%)	27.56\%
S_{27}	345.8	0.0485	HOMO-8 \rightarrow LUMO(81\%)	-3.75\%
S_{28}	338.4	0.0499	HOMO-3 \rightarrow LUMO+3(79\%) HOMO-3 \rightarrow LUMO+4(14\%)	-1.31\%
S_{31}	333.4	0.1008	HOMO-3 \rightarrow LUMO+4(63\%) HOMO-3 \rightarrow LUMO+3(18\%) HOMO \rightarrow LUMO+6(6\%)	0.67\%
S_{32}	331.3	0.0662	HOMO-1 \rightarrow LUMO+5(55\%) HOMO \rightarrow LUMO+6(35\%)	36.75\%
S_{33}	330.1	0.0533	HOMO \rightarrow LUMO+6(49\%) HOMO-1 \rightarrow LUMO+5(34\%) HOMO-6 \rightarrow LUMO +2 (7\%)	37.27\%
S_{34}	325.6	0.1193	HOMO-9 \rightarrow LUMO(46\%) HOMO-5 \rightarrow LUMO+2(34\%) HOMO-4 \rightarrow LUMO+2(12\%)	13.70\%
S_{35}	322.3	0.0328	HOMO-4 \rightarrow LUMO+3(69\%) HOMO-6 \rightarrow LUMO $+2(16 \%)$ HOMO-5 \rightarrow LUMO+3(7\%)	17.47\%
S_{37}	321.7	0.2555	HOMO-5 \rightarrow LUMO+2(47\%) HOMO-9 \rightarrow LUMO(37\%)	15.25\%
S_{40}	315	0.1481	HOMO-4 \rightarrow LUMO+4(84\%)	11.06\%
S_{46}	305.8	0.1566	HOMO-5 \rightarrow LUMO+4(47\%) HOMO-2 \rightarrow LUMO+6(36\%)	29.93\%

(-5.79 ev)

Figure S1. Frontier molecular orbitals and optimized structure pertinent to the singlet optical transitions in selected states for PRT-21.

Table S2. The wavelengths, transition probabilities and charge transfer characters of the singlet optical transitions in selected states with oscillator strength >0.02 over 300 nm for PRT-22 in DMF.

State	? $\lambda_{\text {cal }}(\mathrm{nm})$	f	Assignments	MLCT
T1	813.1	0	HOMO \rightarrow LUMO(95\%)	34.74\%
S_{1}	738.2	0.0319	HOMO \rightarrow LUMO(96\%)	35.11\%
S_{2}	625.8	0.0004	HOMO-1 \rightarrow LUMO(67\%) HOMO-3 \rightarrow LUMO(29\%)	18.29\%
S_{4}	531.1	0.0791	HOMO \rightarrow LUMO+1(61\%) HOMO-2 \rightarrow LUMO(30\%)	34.39\%
S_{5}	519.1	0.0348	HOMO-2 \rightarrow LUMO+1(95\%)	33.29\%
S_{8}	469.5	0.1173	HOMO \rightarrow LUMO+2(95\%)	42.46\%
S_{13}	428.5	0.0707	HOMO-2 \rightarrow LUMO +2 (79\%) HOMO \rightarrow LUMO+4(8\%) HOMO-6 \rightarrow LUMO(7\%)	35.23\%
S_{17}	403.6	0.5438	HOMO-6 \rightarrow LUMO(44\%) HOMO-1 \rightarrow LUMO+3(28\%) HOMO-1 \rightarrow LUMO+4(16\%)	18.45\%
S_{19}	400.9	0.0394	$\begin{aligned} & \text { HOMO-1 } \rightarrow \text { LUMO+3(50\%) } \quad \text { HOMO-1 } \rightarrow \text { LUMO+4(17\%) } \\ & \text { HOMO-6 } \rightarrow \text { LUMO(11\%) } \quad \text { HOMO-3 } \rightarrow \text { LUMO+3(11\%) } \end{aligned}$	19.74\%
S_{21}	383	0.4134	$\begin{aligned} & \text { HOMO-1 } \rightarrow \text { LUMO }+4(43 \%) \quad \text { HOMO- } 5 \rightarrow \text { LUMO }+1(30 \%) \\ & \text { HOMO- } 6 \rightarrow \text { LUMO(14\%) } \end{aligned}$	15.96\%
S_{23}	364.1	0.0415	$\begin{aligned} & \text { HOMO-5 } \rightarrow \text { LUMO }+1(62 \%) \quad \text { HOMO-1 } \rightarrow \text { LUMO }+4(13 \%) \\ & \text { HOMO-6 } \rightarrow \text { LUMO(11\%) } \end{aligned}$	16.10\%
S_{28}	347.5	0.0311	$\begin{aligned} & \text { HOMO-3 } \rightarrow \text { LUMO }+3(77 \%) \quad \text { HOMO-1 } \rightarrow \text { LUMO }+3(11 \%) \\ & \text { HOMO-3 } \rightarrow \text { LUMO }+4(5 \%) \end{aligned}$	40.35\%
S_{29}	346.6	0.0435	HOMO-7 \rightarrow LUMO(81\%)	-3.61\%
S_{30}	343.7	0.0609	$\begin{array}{ll} \text { HOMO-3 } \rightarrow \text { LUMO }+4(66 \%) & \text { HOMO } \rightarrow \text { LUMO }+6(7 \%) \\ \text { HOMO-4 } \rightarrow \text { LUMO }+3(7 \%) & \text { HOMO-3 } \rightarrow \text { LUMO } \end{array}$	35.44\%
S_{31}	337.2	0.0252	HOMO-4 \rightarrow LUMO+3(80\%) HOMO \rightarrow LUMO+6(8\%)	5.06\%
S_{33}	333.4	0.0687	$\begin{array}{ll} \text { HOMO-4 } \rightarrow \text { LUMO }+4(50 \%) & \text { HOMO } \rightarrow \text { LUMO+6(24\%) } \\ \text { HOMO-1 } \rightarrow \text { LUMO+6(10\%) } & \text { HOMO-4 } \rightarrow \text { LUMO }+3(10 \%) \end{array}$	12.92\%
S_{37}	324.2	0.0873	$\begin{aligned} & \text { HOMO-1 } \rightarrow \text { LUMO+5(63\%) } \quad \text { HOMO-9 } \rightarrow \text { LUMO(17\%) } \\ & \text { HOMO-3 } \rightarrow \text { LUMO+5(12\%) } \end{aligned}$	17.91\%
S_{38}	323	0.3129	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO(55\%) HOMO-1 } \rightarrow \text { LUMO+5(19\%) } \\ & \text { HOMO-5 } \rightarrow \text { LUMO }+2(13 \%) \end{aligned}$	7.80\%
S_{41}	313.1	0.0222	HOMO-5 \rightarrow LUMO+4(46\%) HOMO-1 \rightarrow LUMO+6(32\%)	14.88\%
S_{47}	305.5	0.0734	HOMO-5 \rightarrow LUMO+4(44\%) HOMO-1 \rightarrow LUMO+6(44\%)	16.73\%

HOMO-9 (-7.33 eV)	HOMO-7 (-7.14 eV)	HOMO-6 (-6.58 eV)
HOMO-5 (-6.44 eV)	HOMO-4 (-6.19 eV)	HOMO-3 (-6.09 eV)
HOMO-2 (-5.61 eV)	HOMO-1 (-5.57 eV)	HOMO (-5.39 eV)
LUMO (-3.71 eV)	LUMO+1 (-2.54 eV)	LUMO $+2(-2.18 \mathrm{eV})$

Figure S2. Frontier molecular orbitals and optimized structure pertinent to the singlet optical transitions in selected states for PRT-22.

Table S3. The wavelengths, transition probabilities and charge transfer characters of the singlet optical transitions in selected states with oscillator strength >0.02 over 300 nm for PRT-23 in DMF. The lowest triplet optical transition $\left(\mathrm{S}_{0} \rightarrow \mathrm{~T}_{1}\right)$ is also listed.

State	[$\lambda_{\text {cal }}(\mathrm{nm})$	f	Assignments	MLCT
T_{1}	784.8	0	HOMO \rightarrow LUMO(92\%)	39.95\%
S_{1}	701.8	0.0241	HOMO \rightarrow LUMO(93\%)	40.38\%
S_{2}	579.7	0.0476	HOMO-1 \rightarrow LUMO(70\%) \quad HOMO \rightarrow LUMO+1(21\%)	37.53\%
S_{4}	521.9	0.0409	HOMO \rightarrow LUMO+1(68\%) HOMO-1 \rightarrow LUMO(16\%)	39.45\%
S_{6}	479.5	0.1127	HOMO \rightarrow LUMO+2(90\%)	45.57\%
S_{16}	391.8	0.2118	HOMO-6 \rightarrow LUMO(43\%) HOMO-1 \rightarrow LUMO +4 (31\%) HOMO-2 \rightarrow LUMO+3(14\%)	31.06\%
S_{17}	386.5	0.054	```HOMO-5->LUMO(65%) HOMO-2 -LUMO+3(10%) HOMO-4->LUMO(9%) HOMO-2 -LUMO(5%)```	17.21\%
S_{19}	373	0.1661	HOMO-2 \rightarrow LUMO+3(53\%) HOMO-2 \rightarrow LUMO+4(14\%) HOMO-5 \rightarrow LUMO(6\%)	36.64\%
S_{20}	365.5	0.1863	HOMO-7 \rightarrow LUMO(83\%) HOMO-4 \rightarrow LUMO+1(5\%)	0.08\%
S_{24}	348.9	0.1418	HOMO \rightarrow LUMO+5(56\%) HOMO-6 \rightarrow LUMO+1(20\%)	34.22\%
S_{26}	346.6	0.05	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO }+1(39 \%) \quad \text { HOMO-5 } \rightarrow \text { LUMO }+1(21 \%) \\ & \text { HOMO } \rightarrow \text { LUMO+5(15\%) } \end{aligned}$	22.93\%
S_{28}	339.6	0.1297	HOMO-3 \rightarrow LUMO+3(80\%) HOMO-2 LLUMO+5(6\%) $^{\text {(}}$	1.74\%
S_{29}	336.5	0.0445	HOMO-4 \rightarrow LUMO+2(80\%) HOMO-5 \rightarrow LUMO+2(7\%)	7.74\%
S_{35}	322	0.0683	$\begin{aligned} & \text { HOMO-4 } \rightarrow \text { LUMO }+3(33 \%) \quad \text { HOMO- } \rightarrow \text { LUMO }+10(24 \%) \\ & \text { HOMO- }-\rightarrow \text { LUMO }+9(9 \%) \end{aligned}$	7.94\%
S_{38}	317.3	0.082	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO(28\%) } \quad \text { HOMO-7 } \rightarrow \text { LUMO+1(26\%) } \\ & \text { HOMO-1 } \rightarrow \text { LUMO+6(16\%) } \quad \text { HOMO } \rightarrow \text { LUMO }+7(7 \%) \end{aligned}$	11.52\%
S_{39}	316.3	0.0959	$\begin{aligned} & \text { HOMO-10 } \rightarrow \text { LUMO(42\%) } \quad \text { HOMO-7 } \rightarrow \text { LUMO+1(22\%) } \\ & \text { HOMO-9 } \rightarrow \text { LUMO(14\%) } \quad \text { HOMO } \rightarrow \text { LUMO }+7 \text { (8\%) } \end{aligned}$	4.35\%
S_{40}	315.3	0.0538	$\left.\begin{array}{l} \text { HOMO } \rightarrow \text { LUMO+7(35\%) } \\ \text { HOMO-1 } \rightarrow \text { LUMO+6(10\%) } \\ \text { HOMO-6 } \rightarrow \text { LUMO+2(9\%) } \end{array} \text { HOMO-7 } \rightarrow \text { LUMO+1(8\%) }\right)$	26.06\%
S_{41}	313.1	0.0509	HOMO-3 \rightarrow LUMO+4(48\%) HOMO-1 \rightarrow LUMO+6(22\%)	9.39\%
S_{43}	311	0.2123	HOMO-2 \rightarrow LUMO+5(35\%) HOMO-5 \rightarrow LUMO+3(33\%)	28.57\%
S_{49}	300.8	0.0538	HOMO-2 \rightarrow LUMO+5(40\%) HOMO-5 \rightarrow LUMO $+3(34 \%)$ HOMO-11 \rightarrow LUMO(5\%)	28.55\%

(-6.49 ev)
(-2.32 ev)

Figure S3. Frontier molecular orbitals and optimized structure pertinent to the singlet optical transitions in selected states for PRT-23.

Table S4. The wavelengths, transition probabilities and charge transfer characters of the singlet optical transitions in selected states with oscillator strength >0.02 over 300 nm for PRT-24 in DMF.

State	? $\lambda_{\text {cal }}(\mathrm{nm})$	f	Assignments	MLCT
T1	785.4	0	HOMO \rightarrow LUMO(92\%)	39.80\%
S_{1}	703	0.0238	HOMO \rightarrow LUMO(93\%)	40.23\%
S_{2}	579.7	0.0499	HOMO-1 \rightarrow LUMO(67\%) HOMO \rightarrow LUMO+1(21\%)	35.73\%
S_{4}	522.3	0.0526	HOMO \rightarrow LUMO+1(69\%) HOMO-1 \rightarrow LUMO(18\%)	40.47\%
S_{5}	495.3	0.0488	HOMO-1 \rightarrow LUMO+1(90\%)	39.17\%
S_{6}	480.1	0.117	HOMO \rightarrow LUMO+2(88\%)	44.44\%
S_{10}	443.6	0.046	HOMO-1 \rightarrow LUMO+2(93\%)	42.13\%
S_{16}	398	0.4996	HOMO-6 \rightarrow LUMO(45\%) HOMO-2 \rightarrow LUMO $+3(39 \%)$ HOMO-1 \rightarrow LUMO+4(7\%)	19.54\%
S_{17}	395.7	0.2091	HOMO-1 \rightarrow LUMO+4(79\%) HOMO-2 \rightarrow LUMO+3(14\%)	37.54\%
S_{19}	380.6	0.1576	$\begin{array}{lr} \text { HOMO-6 } \rightarrow \text { LUMO(32\%) } & \text { HOMO-2 } \rightarrow \text { LUMO }+3(27 \%) \\ \text { HOMO-1 } \rightarrow \text { LUMO }+4(8 \%) & \text { HOMO- }-\rightarrow \text { LUMO }+4(6 \%) \end{array}$	16.36\%
S_{21}	367	0.0512	HOMO-2 \rightarrow LUMO $+4(53 \%) \quad$ HOMO-7 \rightarrow LUMO(17\%) HOMO-3 \rightarrow LUMO +4 (12\%)	15.82\%
S_{22}	366	0.1659	HOMO-7 \rightarrow LUMO(70\%) HOMO-2 \rightarrow LUMO +4 (8\%) HOMO-5 \rightarrow LUMO+1(6\%)	2.15\%
S_{24}	356	0.1887	$\begin{aligned} & \text { HOMO-3 } \rightarrow \text { LUMO+3(52\%) } \\ & \text { HOMO-5 } \rightarrow \text { LUMO }+1(15 \%) \end{aligned}$	32.88\%
S_{27}	347.8	0.0364	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO }+1 \text { (67\%) } \text { HOMO } \rightarrow \text { LUMO }+5(17 \%) \\ & \text { HOMO-3 } \rightarrow \text { LUMO+3(6\%) } \end{aligned}$	26.77\%
S_{29}	345	0.0405	HOMO \rightarrow LUMO $+5(32 \%)$ HOMO-4 \rightarrow LUMO $+2(24 \%)$ HOMO-3 \rightarrow LUMO+3(20\%) HOMO-6 \rightarrow LUMO +1 (10\%)	27.22\%
S_{30}	335.2	0.0544	$\begin{aligned} & \text { HOMO-4 } \rightarrow \text { LUMO+3(60\%) HOMO-1 } \rightarrow \text { LUMO+5(11\%) } \\ & \text { HOMO-2 } \rightarrow \text { LUMO+5(9\%) } \end{aligned}$	8.54\%
S_{32}	331.4	0.0363	HOMO-5 \rightarrow LUMO+2(85\%)	18.67\%
S_{40}	317.3	0.05	HOMO-9 \rightarrow LUMO (28\%) HOMO-7 \rightarrow LUMO+1(21\%) HOMO-1 \rightarrow LUMO+6(19\%) \quad HOMO \rightarrow LUMO+7(13\%)	13.72\%
S_{41}	316.6	0.1073	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO(44\%) HOMO-7 } \rightarrow \text { LUMO+1(27\%) } \\ & \text { HOMO-8 } \rightarrow \text { LUMO(11\%) } \end{aligned}$	-1.86\%
S_{46}	308.4	0.0366	HOMO-2 \rightarrow LUMO+5(44\%) HOMO-5 \rightarrow LUMO+3(22\%) HOMO-4 \rightarrow LUMO+4(14\%)	15.13\%

HOMO-9 (-7.15 eV)	HOMO-8 (-7.14 eV)	HOMO-7 (-6.66 eV)
	HOMO-5 (-6.35 eV)	HOMO-4 (-6.17 eV)
HOMO-3 (-6.00 eV)	HOMO-2 (-5.59 eV)	HOMO-1 (-5.47 eV)
HOMO (-5.25 eV)		
	LUMO+3 (-1.95 eV)	

Figure S4. Frontier molecular orbitals and optimized structure pertinent to the singlet optical transitions in selected states for PRT-24.

gure S5. UV/Vis spectra and spin density plots for the specified transition of (a) PRT21 (top) and (b) PRT-23 (bottom). Also depicted are the TD-DFT calculated absorption wavelengths (vertical lines) and the relative transition probability (magnitude of vertical lines). Selected frontier orbitals (pink: occupied orbital, yellow: unoccupied orbital) that contribute to the major transitions are also shown.

Figure S6. IPCE spectra of PRT-22 sensitized device. The right axis indicates the integrated photocurrent that is expected to be generated under AM1.5G irradiation.

Figure S7. (a) Electron diffusion coefficient (D) versus Jsc obtained from IMPS measurement and (b) electron lifetime versus voltage obtained by IMVS measurement.

Figure S8. Transient absorption kinetics of DSC devices containing $10 \mu \mathrm{~m} \mathrm{TiO}$ films sensitized with PRT 21 ~ $\mathbf{2 4}$ dyes. Kinetics were recorded at 800 nm following excitation at 500 nm .

References:

1. S.-W. Wang, K.-L. Wu, E. Ghadiri, M. G. Lobello, S.-T. Ho, Y. Chi, J.-E. Moser, F. De Angelis, M. Grätzel and M. K. Nazeeruddin, Chem. Sci., 2013, 4, 2423.
2. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. HumphryBaker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, J. Am. Chem. Soc., 2001, 123, 1613.
3. K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu and P.-T. Chou, Chem. Commun., 2010, 46, 5124.
4. J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. Nelson, X. Li, N. J. Long and J. R. Durrant, J. Am. Chem. Soc., 2004, 126, 5225.
5. B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling and J. R. Durrant, J. Phys. Chem. B, 2006, 110, 17155.
6. N. W. Duffy, L. M. Peter, R. M. G. Rajapakse and K. G. U. Wijayantha, Electrochem. Commun., 2000, 2, 658-662.
7. M. Bailes, P. J. Cameron, K. Lobato and L. M. Peter, J. Phys. Chem. B, 2005, 109, 15429-15435.
