Electronic Supplementary Information for

Facile one step method realizing scalable production of $g-C_3N_4$ nanosheets and study of their photocatalytic H_2 evolution activity

Xiuli Lu,[‡] Kun Xu,[‡] Pengzuo Chen, Kaicheng, Jia, Si Liu, Changzheng Wu*

Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui,230026, P.R. China.

China. Tel: +86 551 63602455; E-mail: E-mail: czwu@ustc.edu.cn

[‡]These authors contributed equally to this work.

Figure S1. The illustration of detailed bubble process during formation of the g-C₃N₄ nanosheet.

In detail, 1g dicyandiamide and 5g ammonium chloride were put into 80ml water and evaporate the water at 100°C. The dried mixture was then heated at 550°C for 4h. According to the reported literature,¹ dicyandiamide would melt at the point of 203°C and change to melamine at 234°C. Within the temperature range from 335°C to 389°C, the melamine began to sublimate and polymerize to polymeric melem. When the temperature raised to 525°C, the carbon nitride network was formed. Ammonium chloride would decompose at 337°C and act as a gas template. With the existence of NH₄Cl₃ the dicyandiamide-derived polymers would be blew by the released gases from NH₄Cl and finally produce g-C₃N₄ nanosheets.²

Figure S2. (A) the HRTEM and (B) corresponding electron diffraction pattern of $g-C_3N_4$ nanosheets.

Figure S3. Photographs of the bulk $g-C_3N_4$ (A) and the as-prepared $g-C_3N_4$ nanosheets (B) after sonicating them in water for 10 seconds. (C) Comparison images of the bulk $g-C_3N_4$ and 2D $g-C_3N_4$ with the same mass after sonicating them in water for only 10 seconds.

Figure S4. The image of the prepared $g-C_3N_4$ nanosheets, showing the realization of scalable production of graphene-like $g-C_3N_4$ by the simple one step method.

Figure S5. The SEM image of the bulk g-C₃N₄.

Figure S6. The TEM images of g-C₃N₄ nanosheets.

Figure S7. XPS survey spectra of the bulk and 2D g-C₃N₄ nanosheets.

The small peak at the position of about 530 eV could be assigned to small amount of oxygen element, which can be ascribed to the trace amount of O_2 molecules adsorbed on surface of synthetic g-C₃N₄ during process of polymerization, which is a common phenomenon for g-C₃N₄ materials.³

Figure S8. (A) UV–visible absorption spectra and (B) the corresponding $(ahv)^2$ versus photon-energy plots of bulk g-C₃N₄ and as-prepared g-C₃N₄ nanosheets.

Figure S9. The fluorescence emission spectra of bulk g-C₃N₄ and graphene-like g-C₃N₄.

Figure S10. A typical time course of hydrogen evolution from a water/triethanolamine solution under visible light irradiation with 50 mg photocatalyst powder.

Figure S11. The N_2 sorption-desorption isotherm of (A) the bulk $g-C_3N_4$ and (B) $g-C_3N_4$ nanosheets.

References

- 1 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, 8, 76.
- 2 X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg and Y. Bando, *Nat. Commun.*, 2013, 4.
- 3 X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J. Am. Chem. Soc., 2012, 135, 18-21.