Electronic Supplementary Information

Investigation of cyano resin based gel polymer electrolyte: in-situ gelation mechanism and electrode/electrolyte interfacial fabrication in lithium-ion battery

Dong Zhou,^{a,b} Yan-Bing He,^a Qiang Cai,^b Xianying Qin,^a Baohua Li,^a Hongda Du,^a Quan-Hong Yang^a and Feiyu Kang^{a,b*}

^a Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, fykang@mail.tsinghua.edu.cn

^b Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Fig. S1 Optical images of PVA-CN sample (a), PVA-CN based GPE (b), commercial 034352 type battery before formation (c) and PVA-CN based GPE battery (d).

Fig. S2 A schematic representation of the separation and purification of the polymer matrix from GPEs.

Fig. S3 Experimental and simulation EIS curves of a polymer LIB using an equivalent circuit by Z-view software.

Fig. S4 Charge and discharge curves of PVA-CN based polymer LIBs with Technology 1 (a) and Technology 2 (b) at 0.2C for some selected cycle numbers.