Electronic Supplementary Information

MoS₂ nanosheet/Mo₂C-embedded N-doped carbon nanotubes: Synthesis and electrocatalytic hydrogen evolution performance

Kai Zhang, " Yang Zhao," Shen Zhang, Hailong Yu, " Yujin Chen, *" Peng Gao, *b and Chunling Zhu*b

^a Key Laboratory of In-Fiber Intregrated Optics, Ministry of Education, and College of Science, Harbin Engineering University, Harbin 150001, China. E-mail: chenyujin@hrbeu.edu.cn
^b College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China. E-mail: gaopeng@hrbeu.edu.cn, and zhuchunling@hrbeu.edu.cn

Experimental sections

Fabrication of MoO₃/PANI hybrids

0.15 g of α -MoO₃ nanorods was dispersed in 100 mL of 1 mol L⁻¹ HCl solution by sonication treatment and then the mixture was cooled down to 0 °C under stirring. 0.2 mL of aniline was dissolved in 100 mL of 1 mol L⁻¹ HCl solution, and then transferred to the solution of ammonium persulfate (0.25 g) dissolved in 100 mL of 1 mol L⁻¹ HCl solution in the beaker. The mixture solution above was cooled down to 0 °C, then transferred to the suspension and kept at the temperature for 4 h under stirring. The precipitate was washed by distilled water and ethanol, and then dried at 40 °C for 24 h.

Fabrication of MoO₂/Mo₂C-NCNTs

After the MoO_3 /PANI hybrids were thermally treated at 700°C for 2 h at Ar gas flow, the MoO_2/Mo_2C -NCNTs were obtained.

Fabrication of MoS₂/Mo₂C-NCNTs

50 mg of the as-obtained MoO₂/Mo₂C-NCNTs was dispersed in 30 mL of 0.15 mol L⁻¹ thiourea solution. The mixture was sonicated for 10 min and stirred for 30 min at room temperature, and then was transferred to a 50 mL Teflon-lined stainless steel autoclave and treated in an oven at 200 °C for 48 h. The resulting precipitate was collected and washed by deionized water and ethanol, and then dried at 40 °C for 24 h.

Fabrication of MoS₂ nanoflowers

50 mg of α -MoO₃ nanorods was dispersed in 30 mL of 0.15 mol L⁻¹ thiourea solution. The mixture was sonicated for 10 min and stirred for 30 min at room temperature, and then was transferred to a 50 mL Teflon-lined stainless steel autoclave and treated in an oven at 200 °C for 48 h. The resulting precipitate was collected and washed by deionized water and ethanol, and then dried at 40 °C for 24 h.

Structural Characterization

The morphology and size of the synthesized 3D architectures were characterized by

scanning electron microscope [HSD/SU70] and an FEI Tecnai-F20 transmission electron microscope equipped with a Gatan imaging filter (GIF). The crystal structure of the sample was determined by X-ray diffraction (XRD) [D/max 2550 V, Cu Ka radiation]. XPS measurements were carried out using a spectrometer with Al Kα radiation (K-Alpha, Thermo Fisher Scientific Co.). The binding energy was calibrated with the C 1s position of contaminant carbon in the vacuum chamber of the XPS instrument (284.8 eV).

Electrochemical measurements

Electrochemical measurements were performed in a three-electrode system at an electrochemical station (CHI660D). The three-electrode configuration using an Ag/AgCl (KCl saturated) electrode as the reference electrode, a graphite rod as the counter electrode, and the carbon paper coated with catalyst was used as the working electrod. The working electrode was fabricated as follow: the catalyst was dispersed in N-methyl-2-pyrrolidone (NMP) solvent containing 7.5 wt% polyvinylidene fluoride (PVDF) under sonication, in which the weight ratio of the catalyst to PVDF is 8:1. Then the slurry was coated onto a piece of carbon paper (length×diameter×thickness = 6 cm×1 cm×0.03 cm). The loading density of the catalyst was $\sim 2 \text{ mg cm}^2$. Linear sweep voltammetry with scan rate of 5 mV s⁻¹ was conducted in 0.5 M H₂SO₄ (deaerated by N₂). For a Tafel plot, the linear portion is fit to the Tafel equation. All data have been corrected for a small ohmic drop based on impedance spectroscopy. In 0.5 M H₂SO₄, $E_{(RHE)} = E_{(SCE)} + 0.21 \text{ V}$. All the potentials reported in our manuscript were calibrated to a reversible hydrogen electrode (RHE).

Catalyst type	Loading density [<i>m</i> g cm ⁻²]	Tafel slope [mV dec ⁻¹]	Exchange current j ₀ [µA cm ⁻²]	$j [\text{mA cm}^{-2}]$ at $\eta = 150 \text{mV}$	$j [\text{mA cm}^{-2}] \text{ at}$ $\eta \equiv 200 \text{mV}$	$j [\text{mA cm}^{-2}]$ at $\eta = 300 \text{mV}$	Refs
Double-gyroid MoS ₂	0.06×10-3	50	_	1	4		3 b)
Oxygen-Incorporated MoS ₂	0.285	55	12.6	4	19	127	3 g)
Rich-defect MoS ₂	0.285	50	9	0	13	70	3 f)
MoS _x /3D Graphene	5	43	—	13	42	140	6 a)
Mo ₂ C/CNT	2.0	55.2	14	9.8	—		12
Mo ₂ C/XC	2.0	59.4	8.1	3.2	~7		12
Mo ₂ C/NWs	0.357	55.8	—	~1.5	10.2	~65	13
Mo ₂ C/NSs	0.357	64.5	_	~1	5.3	~30	13
Mo ₂ C	0.8	54	3.8	2	14	_	7 a)
MoS ₂ /Mo ₂ C-NCNTs	2.0	69	21	5.7	15.4	280	This work
Bulk MoS ₂	2.0	120	—	1.4	3	21	This work
MoS_2 nanoflowers	3.0	113	—	10.7	16.9	123	This work

Table S1. Comparisons of HER performances among different MoS_2 and Mo_2C -based catalysts

Figure S1. SEM images of MoO₃/PANI composite.

Figure S2. XRD pattern of MoO₂/Mo₂C-NCNTs.

Figure S3. SEM image of MoO₂/Mo₂C-NCNTs.

Figure S4. XPS spectra of MoO_2/Mo_2C -NCNTs. (a) The survey, and (b) N1s spectra.

Figure S5. XRD pattern of MoS₂/Mo₂C-NCNTs.

Figure S6. The survey XPS spectrum of MoS_2/Mo_2C -NCNTs

Figure S7. EELS spectrum for MoS₂/Mo₂C-NCNTs

Figure S8. (a) XRD and (b) SEM image of MoS_2 nanoflowers.

Figure S9. ESI spectra of MoS_2/Mo_2C -NCNTs and MoS_2 nanoflowers.