Carbon nanorods derived from natural based nanocrystalline cellulose for highly-efficient capacitive deionization

Yong Liu^{*a*}, Likun Pan^{*a*,*}, Xingtao Xu^{*a*}, Ting Lu^{*a*}, Zhuo Sun^{*a*}, Daniel H. C. Chua^{*b*},

^aEngineering Research Center for Nanophotonics & Advanced Instrument,

Ministry of Education, Department of Physics, East China Normal University, Shanghai

200062, China

^bDepartment of Materials Science and Engineering, National University of Singapore 117574,

Singapore

^{*} Corresponding author. Tel: 86 21 62234132; Fax: 86 21 62234321; E-mail: lkpan@phy.ecnu.edu.cn

Fig. S1. The comparison of densities between CNR1200, CAs, CNTs and AC powders (1 g power in each vial).

Fig. S1 shows the comparison of densities between CNR1200, CAs, CNTs and AC powders. In each vial, 1 g of CNR1200, CAs, CNTs and AC powders was contained, respectively. Obviously, CNR1200 powder has a very low density, which is even \sim 1/2 lower than that of CAs, only \sim 1/5 of CNTs and \sim 1/6 of AC.

Fig. S2. Pore size distribution of CNR1200.

Fig. S3. Electrosorption capacities for AC, CNTs, CAs and CNR1200 electrodes in NaCl solutions with an initial concentration of 500 mg l⁻¹.

Table S1 Specific surface areas, square resistances, electrode thickness and electrosorptioncapacities of AC, CNTs, CAs and CNR1200.

Samples	CNTs	CAs	AC	CNR1200
Specific surface area (m ² g ⁻¹)	400	948.20 ¹	1500-1850	864.10
Square resistance (m Ω)	74	104	209	70
Electrodes thickness (µm)	203	199	206	205
Electrosorption capacity (mg g-	2.64	5.276	11.09	15.12
¹)				

^{*a*} the specific surface area of CAs is obtained from our previous works.¹

References:

- 1. Y. Liu, C. Y. Nie, L. K. Pan, X. T. Xu, Z. Sun and D. H. Chua, Inorg. Chem. Front., 2014, 1, 249-255.
- 2. S. Porada, M. Bryjak, A. Van Der Wal and P. M. Biesheuvel, *Electrochim. Acta*, 2012, 75, 148-156.