Electronic supplementary information

Scalable Synthesis of Graphene-wrapped Li₄Ti₅O₁₂ Dandelion-like Microspheres for Lithium-ion Batteries with Excellent rate capability and Long-cycle Life

Dezhi Kong,^a Weina Ren,^a Yongsong Luo,^b Yaping Yang ^a and Chuanwei Cheng *^a

^a MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P.R. China

^b Department of Physics & Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R.China

Figure S1. Comparison of the individual colors of the prepared samples.

Figure S2. (a) XPS spectra of as-synthesized $Li_4Ti_5O_{12}$ @graphene hierarchical heterostructures; (b) XPS survey scan of O 1s region.

Figure S3. (a, b) SEM images of $Li_4Ti_5O_{12}$ precursor at various magnifications; (c, d) SEM images of $Li_4Ti_5O_{12}$ microspheres at various magnifications; (e) SEM image of a cross-sectionally damaged $Li_4Ti_5O_{12}$ microspheres; (f) SEM images of GO nanosheets at low-magnifications; The insets of (a) and (c) are the photographs from $Li_4Ti_5O_{12}$ precursor and $Li_4Ti_5O_{12}$ microspheres, respectively, and the insets of (b) is the low-magnification TEM image of the $Li_4Ti_5O_{12}$ precursor.

Figure S4. SEM images of the $Li_4Ti_5O_{12}$ microspheres at various reaction stages with the different reaction time: (a, b) 1.5 h, (c, d) 3.0 h, (e, f) 4.5 h and (g, h) 6.0 h. The inset of (h) is the SEM pattern from a broken $Li_4Ti_5O_{12}$ microsphere.

Figure S5. (a, b) SEM image of 1 wt% graphene coated $Li_4Ti_5O_{12}$ microspheres at various magnifications; (c, d) SEM image of 3 wt% graphene coated $Li_4Ti_5O_{12}$ microspheres at various magnifications; (e, f) SEM image of 5 wt% graphene coated $Li_4Ti_5O_{12}$ microspheres at various magnifications.

Figure S6. (a) Cyclic voltammograms of the Li₄Ti₅O₁₂@graphene (3 wt%) between 3.0 and 0.01 V at a scan rate of 0.5 mV s⁻¹; (b) Galvanostatic discharge/charge profiles of the pure Li₄Ti₅O₁₂ anode at a constant current density of 0.12 A g⁻¹ for the 1st~500th; (c) The coulombic efficiency of 3 wt% graphene coated Li₄Ti₅O₁₂ microspheres at a charge/discharge rate of 0.12 A g⁻¹. The insets of (c) are the cyclic voltammograms (CV) curves and electrochemical impedance spectroscopy (EIS) of the Li₄Ti₅O₁₂@graphene (3 wt%) composites electrode before and after cycling, respectively.

Figure S7. Initial charge-discharge curves of the pure $Li_4Ti_5O_{12}$ and $Li_4Ti_5O_{12}$ @graphene (3 wt%) composite electrodes between (a) 0.01-3.0 and (b) 0.7-3.0 V vs. Li/Li^+ at 0.69 C rate; (c) Charge and discharge curves of $Li_4Ti_5O_{12}$ @graphene (3 wt%) discharged to 0.7 V with a different charge and discharge rate; (d) Cycling performance of pure $Li_4Ti_5O_{12}$ and $Li_4Ti_5O_{12}$ @graphene (3 wt%) discharged to 0.7 V.

Table 1. Specific capacitance of the $Li_4Ti_5O_{12}$ and $Li_4Ti_5O_{12}$ @graphene composites prepared in this work and of the $Li_4Ti_5O_{12}$ and $Li_4Ti_5O_{12}$ -based composites reported in previous work. Information regarding the current density and the mass loading of active materials is included for better comparison among different samples.

Materials	Fabrication method	Active mass loading	Cy cle potential range	Specific Capacitance	Remarks	Ref.
dan delion-like Li₄Ti₅O1₂ nanospheres	hydrothermal reaction	1.42 m g/cm ²	0.01-3.0 V	136 mAh g-1 after 500 cycles at 0.69 C rate	~42% capacity loss for 500 cycles at 0.69 C rate	this work
			0.7-3.0 V	117 mAh g¹ after 100 cycles at 0.69 C rate	~15.2% capacity loss for 100 cycles at 0.69 C rate	
Li₄Ti₅O ₁₂ @graphene (3 wt%) composites	hydrothermal reaction	1.68 m g/cm ²	0.01-3.0 V	206 m Ah g ^{.1} after 500 cycles at 0.69 C rate	~21% capacity loss for 500 cycles at 0.69 C rate	this work
			0.7-3.0 V	166 mAh g⊡ after 100 cycles at 0.69 C rate	~15.3% capacity loss for 100 cycles at 0.69 C rate	
Li ₄ Ti ₅ O ₁₂	solid-state method	N.A.	0.01-2.5 V	213 mAh g₁after 152 cycles at1 C rate	~22% capacity loss for 152 cycles at 1 C rate	[1]
Li ₄ Ti ₅ O ₁₂	solid-state method	N. A.	0-2.5 V	197 m Ahg₁¹after 50 cycles	~19% capacity loss for 50 cycles	[2]
			0.5-2.5 V	165 mAhg₁after 50 cycles	~8.4% capacity loss for 50 cycles	
lanthanum-modified Li₄Ti₅O₁₂	solid-state method	N.A.	0-3.0 V	206 and 197 mAhg ^{.1} after 100 cycles at 1 C and 3 C	~3% capacity loss for 100 cycles at 1 C rate	[3]
mesoporous Li₄Ti₅O12 hollow spheres	templating method	N. A.	1.0-3.0 V	150 mAh g₁ at 2C rate	~12% capacity loss for 100 cycles at 5 C rate	[4]
hollow Li ₄ Ti ₅ O ₁₂ urchin- like microspheres	versatile sol-gel process, hydrothermal reaction	N. A .	1.0-3.0 V	157.1 mAh g ^{.1} after 100 cycles at 2 C rate	~1.9% capacity loss for 100 cycles at 2 C rate	្រា
Li ₄ Ti ₅ O ₁₂ -graphene hybrid nanostructures	hydrothermal reaction	N. A.	0.9-2.5V	168.5mAh g₁at 0.1 C rate	capacity loss was 3.1% at 1 C, 2.5% at 10 C and 2.9% at 60 C rate	[6]
nanosized Li ₄ Ti ₅ O ₁₂ / graphene hybrid materials	ballmilling	N. A .	0.8-2.6 V	170 mAhg [.] 1 at 1 C rate	~5.2% capacity loss for 300 cycles at 20 C rate	[7]
microscale C-Li₄Ti₅O ₁₂ particles	solid-state reaction	N. A.	1.0-3.0 V	165 mAhg ₁at1 Crate	<1%capacity loss after 100 cycles at 1 C rate	[8]
Li ₄ Ti ₅ O ₁₂ @C hollow microspheres	solution-phase selfassembly and subsequent solid -phase lithiation	N. A .	1.0-3.0 V	152 mA h g·1 and 116 mA h g·1 at 1 C and 5 C, respectively	a capacity retention of 120 mA h g ⁻¹ after 80 cycles at 10 C rate	[9]
Li₄Ti₅O ₁₂ /C composite	hydrothermal method	N. A.	1.0-2.5 V	176 mAhg₁and 136 mAhg₁ at 0.1 Cand 20 C, respectively	~19.7% and 24.2% capacity loss for 200 cycles at 10 and 20C rate	[10]
Li₄Ti₅O₁₂ nanosheets/ N-doped carbon	N. A.	N. A .	0.9-2.5V	170.1 mAh g ^{.1} at 1C rate	<1%capacity loss after 100 cycles at 10 C rate	[11]
Microscale C-Li ₄ Ti ₅ O ₁₂ particles	Solid-state reaction	N. A.	1.0-3.0 V	165 mA h g-1 and 123 mA h g-1 at 1 C and 10 C, respectively	~6.3% capacity loss for 100 cycles at 10 C rate	[12]

References

[1] D. M. Wu, *Ionics*, 2012, 18, 559-564.

[2] T. F. Yi, J. Shu, Y. R. Zhu, X. D. Zhu, R. S. Zhu, A. N. Zhou, J. Power Sources, 2010, 195, 285-288.

[3] T. F. Yi, Y. Xie, Q. J. Wu, H. P. Liu, L. J. Jiang, M. F. Ye and R. S. Zhu, *J. Power Sources*, 2012, **214**, 220-226.

[4] L. Yu, H. B. Wu and X. W. Lou, Adv. Mater., 2013, 25, 2296-2300.

[5] J. Cheng, R. C. Che, C. Y. Liang, J. W. Liu, M. Wang and J. J. Xu, *Nano Research*, 2014, 7, 1043-1053.

[6] L. F. Shen, C. Z. Yuan, H. J. Luo, X. G. Zhang, S. D. Yanga and X. J. Lu, *Nanoscale*, 2011, **3**, 572-574.

[7] Y. Shi, L. Wen, F. Li and H. M. Cheng, Journal of Power Sources, 2011, 196, 8610-8617.

[8] H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh, K. Amine, B. Scrosati and Y. K. Sun, *Energy Environ. Sci.*, 2011, 4, 1345-1351.

[9] J. Liu, W. Liu, S. M. Ji, Y. L. Wan, H. Q. Yin and Y. C. Zhou, *Eur. J. Inorg. Chem.*, 2014, 2014, 2073-2079.

[10] B. H. Li, C. H. Han, Y. B. He, C. Yang, H. D. Du, Q. H. Yang and F. Y. Kang, *Energy Environ. Sci.*, 2012, **5**, 9595-9602.

[11] N. Li, G. M. Zhou, F. Li, L. Wen and H. M. Cheng, Adv. Funct. Mater., 2013, 23, 5429-5435.

[12] H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh, K. Amine, B. Scrosati and Y. K. Sun, *Energy Environ. Sci.*, 2011, 4, 1345-1351.