Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Manuscript resubmitted to Journal of Material Chemistry A, (6 October, 2014)

Ultrafast Nano-Spherical Single-Crystalline of LiMn_{0.792}Fe_{0.198}Mg_{0.010}PO₄ Solid-Solution Confined among Unbundled Interstices of SGCNT

Kazuaki Kisu¹, Etsuro Iwama^{1,3}, Wataru Onishi¹, Shota Nakashima¹, Wako Naoi², and Katsuhiko Naoi^{*1,2,3}

¹Department of Applied Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558, Japan *E-mail: <u>k-naoi@cc.tuat.ac.jp</u>

²Division of Arts and Sciences, K & W Inc, 1-3-16-901 Higashi, Kunitachi, Tokyo 186-0002, Japan

³Advanced Capacitor Research Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558, Japan

Fig. S1 Raman spectrum for the pristine super growth (single-walled) carbon nanotube (SGCNT) with the $I_D/I_G = 0.40$. The measurement was conducted on the bundled position of SGCNT by Raman spectroscopy systems (Horiba Jobin-Yvon, LabRam HR evolution).

Fig. S2 [**TOP**] XRD patterns for LiMn_{0.76}Fe_{0.19}Mg_{0.05}PO₄/SGCNT composite. The major diffraction peaks of these composites ((101), (111), (211), and (311)) are well indexed to the orthorhombic structure of LiMnPO₄ and no peaks for possible impurities were found, as same as other two LiMn_{0.8}Fe_{0.2}PO₄/SGCNT and LiMn_{0.792}Fe_{0.198}Mg_{0.010}PO₄/SGCNT (shown in Fig. 1 right A and B). [**BOTTOM**] Plots of three refined lattice (a-, b-, and c-) parameters and the volume of LiMn_{0.8}(1-z)Fe_{0.2}(1-z)PO₄ with respect to Mg dosage (z = 0-0.05). The lattice parameters and volume were calculated from the Rietveld analysis on XRD patterns shown in Fig. 1 Right (A), (B), and Fig. S2 top. A decrease in each three parameters and volume with an increase of Mg dosage is due to the smaller lattice size of LiMgPO₄ than other phosphates; LiFePO₄ and LiMnPO₄. The obtained linearity in each four figures suggests that the Mg atom was successfully doped into the LiMn_{0.8}Fe_{0.2}PO₄/SGCNT nano-crystals.

Fig. S3 HRTEM images for the synthesized LiMn_{0.8}Fe_{0.2}PO₄/ supergrowth (single-walled) carbon nanotubes (denoted as SGCNT) composite, which was prepared under ultra-centrifuging (UC) treatment with the same dosage condition of Mn/Fe (= 4) for the LiMn_{0.792}Fe_{0.198}Mg_{0.01}PO₄/SGCNT except Mg doping (see experimental section). (a) Lower magnification HRTEM image shows that the spherical LiMn_{0.8}Fe_{0.2}PO₄ (10-40 nm of diameter), which is highly dispersed and encapsulated within the SGCNT interstices. (b) Higher magnification HRTEM image of the LiMn_{0.8}Fe_{0.2}PO₄ nanoparticle with clear lattice fringes. These images (LiMn_{0.8}Fe_{0.2}PO₄/SGCNT composite) and Fig. 2a-d (LiMn_{0.792}Fe_{0.198}Mg_{0.010}PO₄/SGCNT composite) clearly indicate that the UC treatment enables the *in-situ* synthesis of nano-crystalline LiMn_{0.8}Fe_{0.2}PO₄ or LiMn_{0.792}Fe_{0.198}Mg_{0.010}PO₄ particles in the presence of SGCNT, simultaneously achieving such a highly unbundled state of the SGCNT.

Fig. S4 Electron diffraction patterns for $LiMn_{0.792}Fe_{0.198}Mg_{0.010}PO_4/SGCNT$ (their HRTEM images are shown in Fig. 2), indicating that those patterns are identical to $LiMnPO_4$ and graphite attributed to the basal plane of SGCNT.

Fig. S5 (a) Charge-discharge curves for pure SGCNT electrode. Charge-discharge tests were performed using a 2032-typed coin cells composed of Li metal and SGCNT electrodes. Used electrolyte composition was 1M LiPF₆/EC + DEC (EC/DEC =50/50, v/v). Charge-discharge performance was conducted under the CC-CV (charge) and CC (discharge) mode between 2.5 and 4.5 V, at constant charge current density of 0.1C and at different discharge current densities ranging from 0.1C to 100C (assuming $1C = 40 \text{ mA g}^{-1}$. The electrode composition was 90 wt% of SGCNT and 10 wt% of polyvinylidene difluoride. (b) Summarized results of Fig S5a: discharge capacity for SGCNT electrode with respect to current density.