Supplementary Information

Armored Cobalt-Citrate Framework with Graphene Oxide Exhibiting Improved Thermal Stability and Selectivity for Biogas Decarburization

Yangcan Shen,^{1,2} Ziyin Li,¹ Lihua Wang,¹ Yingxiang Ye,¹ Qing Liu,¹ Xiuling Ma,¹ Qianhou Chen,¹ Zhangjing Zhang^{1,*} and Shengchang Xiang^{1,3,*}

 ¹ Fujian Provincial Key Laboratory of Polymer Materials, College of Material Sciences and Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
² State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
³ College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Boulevard, Haidian District, Beijing 100081, China

* To whom correspondence should be addressed. Email addresses: Z.-J. Zhang (<u>zzhang@fjnu.edu.cn</u>) and S.-C. Xiang (<u>scxiang@fjnu.edu.cn</u>)

Contents

Table S1 Summary of the parameters and the enthalpies of gas adsorption on UTSA-16-GO
composites at 296 and 273 K obtained from the virial equationS3
Table S2 Adsorption selectivities for equimolar $\mathrm{CO}_2/\mathrm{CH}_4$ mixture at 200 kPa and 296 K by IAST
on different MOFsS4
Figure S1 FTIR spectra of as-synthesized GO, UTSA-16 and compositesS5
Figure S2 SEM images for the composites
Figure S3 TEM images for UTSA-16S6
Figure S4 TEM images for the composites
Figure S5 \mid (a) Cumulative pore volume and (b) pore-size distribution for UTSA-16 and its
composites
Figure S6 The virial graphs for adsorption of CO ₂ on UTSA-16-GO9.5S8
Figure S7 The virial graphs for adsorption of CH ₄ on UTSA-16-GO9.5S8
Figure S8 The virial graphs for adsorption of CO ₂ on UTSA-16-GO19S8
Figure S9 The virial graphs for adsorption of CH ₄ on UTSA-16-GO19S9
Figure S10 The virial graphs for adsorption of CO ₂ on UTSA-16-GO28.5S9
Figure S11 The virial graphs for adsorption of CH ₄ on UTSA-16-GO28.5S9
Figure S12 Comparison of the enthalpies for gas adsorption of CO ₂ , CH ₄ on UTSA-16-GO9.5
from two methods: virial equation (solid) and linear extrapolation (open)S10
Figure S13 Comparison of the enthalpies for gas adsorption of CO ₂ , CH ₄ on UTSA-16-GO19
from two methods: virial equation (solid) and linear extrapolation (open)S10
Figure S14 Comparison of the enthalpies for gas adsorption of CO ₂ , CH ₄ on UTSA-16-GO28.5
from two methods: virial equation (solid) and linear extrapolation (open)S10
Figure S15 The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2
(left) and CH ₄ (right) on UTSA-16-GO9.5 at 296KS11
Figure S16 The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2
(left) and CH ₄ (right) on UTSA-16-GO19 at 296KS11
Figure S17 The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2
(left) and CH ₄ (right) on UTSA-16-GO28.5 at 296KS11
Supplementary References

Sample	adsorbate	Τ/	$A_0/$ $A_1/$		R^2	$\Delta \mathrm{H}/$
		Κ	$\ln(\text{mol g}^{-1} \text{ Pa}^{-1})$	g mol ⁻¹		kJ mol ⁻¹
UTSA-16-GO9.5	CO_2	296	-12.780±0.112	-1684.456±27.666	0.998	
		273	-11.544±0.141	-2002.903±41.121	0.998	36.1
	CH_4	296	-19.471±0.001	-420.455±4.349	0.999	
		273	-19.097±0.001	-324.566±12.874	0.994	10.9
UTSA-16-GO19	CO_2	296	-12.059 ± 0.092	-1405.067±29.558	0.996	
		273	-10.616±0.119	-1653.615±37.188	0.998	42.1
	CH_4	296	-19.038 ± 0.002	-296.732±7.023	0.996	
		273	-18.646±3.946E-4	-251.911±1.888	0.999	11.7
UTSA-16-GO28.5	CO_2	296	-12.021±0.075	-1943.720±56.301	0.994	
		273	-10.650±0.113	-2285.230±70.018	0.996	40.0
	CH_4	296	-19.176±6.443E-4	-407.189±8.954	0.996	
		273	-18.800 ± 0.002	-402.117±11.438	0.996	11.4

Table S1 | Summary of the parameters and the enthalpies of gas adsorption on UTSA-16-GO composites at 296 and 273 K obtained from the virial equation, as shown in Figures S6~S11.

Table S2 | Adsorption selectivities for equimolar CO_2/CH_4 mixture at 200 kPa and 296 K by IAST on different MOFs.

MOFs	T / K	S_{ads} (CO ₂ /CH ₄)	Supplementary
			References
polyamine incorporated	298	931	1
amine-MIL-101 (Cr) (c)			
polyamine incorporated	298	278	1
amine-MIL-101 (Cr) (b)			
UTSA-16-GO19	296	114.4	This work
MgMOF-74	296	105	2
UTSA-16-GO9.5	296	98.7	This work
UTSA-16-GO28.5	296	89.4	This work
$[Cd_2L1(H_2O)]_2 \cdot 5H_2O$	298	66	3
UTSA-16	296	29.8	2
polyamine incorporated	298	21	1
amine-MIL-101 (Cr) (a)			
Fe ₂ (dobdc)	298	20.2	4
UiO-66(Zr)-CO ₂ H	298	19.2	5
MOF-5 (IRMOF-1)	298	15.5	6
UTSA-15a	296	14.2	2
Cu-TDPAT	296	13.8	2
bio-MOF-11	298	~12	7
$Cu(bpy-1)_2(SiF_6)$	298	~11	8
$Zn_5(BTA)_6(TDA)_2$	296	10.8	2
ZIF-78	296	10.4	2
MIL-101	296	9.6	9
UTSA-72a	293	9.6	10
UTSA-25a	296	9.4	2
UTSA-20a	296	8.3	2
Fe ₂ (O ₂)(dobdc)	298	7.8	4
CuBTC	296	7.4	9
UTSA-33a	296	7.0	2
MIL-53	298	7	11
UTSA-34b	296	5.1	2
MOF-177	298	4.4	6

Figure S1 | FTIR spectra of as-synthesized GO, UTSA-16 and composites.

Figure S2 | SEM images for UTSA-16-GO9.5 (a) and UTSA-16-GO28.5 (b).

Figure S3 | TEM images for UTSA-16.

Figure S4 | TEM images for UTSA-16-GO9.5 (a, b), UTSA-16-GO28.5 (c, d).

Figure S5 | (a) Cumulative pore volume and (b) pore-size distribution for UTSA-16 and its composites from CO_2 adsorption at 273 K (calculated by using a slit pore NLDFT model).

Figure S6 | The virial graphs for adsorption of CO₂ on UTSA-16-GO9.5 at 296 K (left) and 273 K (right).

Figure S7 | The virial graphs for adsorption of CH_4 on UTSA-16-GO9.5 at 296 K (left) and 273 K (right).

Figure S8 | The virial graphs for adsorption of CO₂ on UTSA-16-GO19 at 296 K (left) and 273 K (right).

Figure S9 | The virial graphs for adsorption of CH₄ on UTSA-16-GO19 at 296 K (left) and 273 K (right).

Figure S10 | The virial graphs for adsorption of CO_2 on UTSA-16-GO28.5 at 296 K (left) and 273 K (right).

Figure S11 | The virial graphs for adsorption of CH_4 on UTSA-16-GO28.5 at 296 K (left) and 273 K (right).

Figure S12 | Comparison of the enthalpies for gas adsorption of CO_2 (left), CH_4 (right) on UTSA-16-GO9.5 from two methods: virial equation (solid) and linear extrapolation (open).

Figure S13 | Comparison of the enthalpies for gas adsorption of CO_2 (left), CH_4 (right) on UTSA-16-GO19 (magenta) from two methods: virial equation (solid) and linear extrapolation (open).

Figure S14 | Comparison of the enthalpies for gas adsorption of CO_2 (left), CH_4 (right) on UTSA-16-GO28.5 (olive) from two methods: virial equation (solid) and linear extrapolation (open).

Figure S15 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2 (left) and CH_4 (right) on UTSA-16-GO9.5 at 296K.

Figure S16 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2 (left) and CH_4 (right) on UTSA-16-GO19 at 296K.

Figure S17 | The graphs of the Single-site Langmuir-Freundlich equations fit for adsorption of CO_2 (left) and CH_4 (right) on UTSA-16-GO28.5 at 296K.

Supplementary References

- (1) Q. Yan, Y. Lin, C. Kong and L. Chen, Chem. Commun., 2013, 49, 6 873.
- (2) S. -C. Xiang, Y. -B. He, Z. -J. Zhang, H. Wu, W. Zhou, R. Krishna and B. -L. Chen, *Nature Commun.*, 2012, 3, 954.
- (3) L. Hou, W. -J. Shi, Y. -Y. Wang, Y. Guo, C. Jin and Q. -Z. Shi, Chem. Commun., 2011, 47, 5464.
- (4) W. Lou, J. Yang, L. Li and J. Li. J. Solid State Chem., 2014, 213, 224.
- (5) Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and G. Maurin, *Chem. Commun.*, 2011, 47, 9603.
- (6) D. Saha, Z. Bao, F. Jia and S. Deng, Environ. Sci. Technol., 2010, 44, 1820.
- (7) E. Atci, I. Erucar and S. Keskin, J. Phys. Chem. C, 2011, 115, 6833.
- (8) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2012, 134, 3663.
- (9) P. Chowdhury, S. Mekala, F. Dreisbach and S. Gumma, Microporous Mesoporous Mater., 2012, 152, 246.
- (10) H. Alawisi, B. Li, Y. He, H. D. Arman, A. M. Asiri, H. Wang and B. Chen, *Cryst. Growth Des.*, 2014, 14, 2522.
- (11) V. Finsy, L. Ma, L. Alaerts, D. E. D. Vos, G. V. Baron and J. F. M. Denayer, *Microporous Mesoporous Mater.*, 2009, **120**, 221.