Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supported Platinum-Zinc Oxide Core-Shell Nanoparticle Catalysts for Methanol Steam

Reforming

Lisandra Arroyo-Ramírez,^{a,*} Chen Chen,^a Matteo Cargnello,^b Christopher B. Murray,^{b,c} Paolo Fornasiero^d and Raymond J. Gorte^{a,*}

^aDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104, USA

^bDepartment of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA

^cDepartment of Materials Science and Engineering, 3231 Walnut Street, Philadelphia, PA 19104, USA

^dDepartment of Chemical and Pharmaceutical Sciences, ICCOM-CNR, Consortium INSTM, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.

*E-mail: gorte@seas.upenn.edu (RJG); lisandra@seas.upenn.edu (LAR)

Experimental Section

Characterization

Powder X-ray diffraction (XRD) patterns were recorded using a Rigaku Geigerflex diffractometer with Cu-K_a radiation source. Temperature-Programmed-Oxidation (TPO) measurements were performed in a ¹/₄-inch, quartz, tubular reactor equipped with an on-line quadrupole mass spectrometer. Experiments were conducted with 0.1 g of sample to determine when the carbon, organic ligands, are removed from the sample. The samples that were examined by TPO in this study were not calcined but simply dried at 338 K overnight and pressed into thin wafers before placing them in the reactor. The gas-phase composition was chosen to be 20% O₂ in He, with a total flow rate of 25 mL min⁻¹; and the heating rate was 3 K min⁻¹. The peaks in Figure S1 correspond to O₂ (*m/e* = 32). Temperature programmed reduction (TPR) was carried out on the Pt@ZnO/Si-Al₂O₃ catalyst that had been calcined at 773 K, using H₂ with a heating rate of 10 K min⁻¹.

Figures and Tables

Fig. S1 Temperature programmed oxidation (TPO) results for uncalcined (a) Pt@ZnO/Si-Al₂O₃ and (b) Pd@ZnO/Si-Al₂O₃ samples.

Fig. S2 Representative TEM image of Pd@ZnO/Si-Al₂O₃ sample calcined at 773 K in air. Yellow arrows point to core-shell structures where the higher contrast is attributed to Pd cores surrounded by a lighter, ZnO shell.

Fig. S3 X-ray diffraction (XRD) patterns of (A) Si-Al₂O₃, (B) Pt/Al₂O₃, (C) ZnO, (D) Pt/ZnO, and (E) Pt@ZnO/Si-Al₂O₃. Inset in (D) show magnification of the platinum (111) region.

Fig. S4 X-ray diffraction (XRD) patterns of (A) Si-Al₂O₃, (B) Pd/Al₂O₃, (C) ZnO, (D) Pd/ZnO, and (E) Pd@ZnO/Si-Al₂O₃ calcined at 773 K.

Fig. S5 Temperature programmed reduction (TPR) profile for the Pt@ZnO/Si-Al₂O₃ sample.

Catalysts	Conversion (%)	CO ₂ selectivity (%)
Pt@ZnO/Si-Al ₂ O ₃	92	76
Pt/Al ₂ O ₃	99	10
Pt/ZnO	92	66
Pd@ZnO/Si-Al ₂ O ₃	95	34
Pd/ZnO	93	65
Pd/Al ₂ O ₃	99	1

Table S1 Methanol steam reforming activity and CO₂ selectivity of the catalysts at 573 K.