Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Facile preparation of MnO₂ doped Fe₂O₃ hollow nanofibers for low temperature SCR of NO with NH₃

Li*b

^a College of Environmental Science and Engineering, Key Laboratory of Environmental Pollution Process and Environmental Criteria, Nankai University, Tianjin 300071, P. R. China; E-mail: sihuizhan@nankai.edu.cn, Tel/Fax: +86-22-23502756.

^b Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China, E-mail: liyi@tju.edu.cn

Fig. S1. SEM image of electrospun MnFe (0.05) hollow nanofibers

Fig. S2. SEM image of electrospun MnFe (0.20) hollow nanofibers

The stability of MnFe (0.15) under severe hydrothermal treatment (1023 K, 10% H₂O) was tested after being aged for 24h, and the flow rate of N₂ was 100 mL/min. After being aged, the XRD patterns of MnFe (0.15) changed from Fe₂O₃ (PDF#19-0629) to Fe₂O₃ (PDF#79-1741); and the whole catalytic performance decreased obviously and moved to high temperature, the best NO conversion was only 81% at 200 °C; the SEM image showed that there were lots of incomplete tube, some of the hollow tube were damaged. All this results showed that the stability of hollow fibers needed to further improvement in future.

Fig. S3. XRD patterns of MnFe(0.15) hollow nanofibers.

Fig. S5. SEM image of MnFe(0.15) hollow nanofibers after being aged

Sample	temperature/°C	conversion/%	TOF(10 ⁻⁴ s ⁻¹)
MnFe(0.05)	50	38.2	0.243
	75	47.8	0.304
	100	55.8	0.355
MnFe(0.15)	50	54	0.262
	75	80.7	0.392
	100	88.5	0.430

Table. S1 the TOF analysis of MnFe (0.05) and MnFe (0.15)

The turnover frequency (TOF) was a basic parameter to evaluate catalyst's activities. As shown in Table. S1, the TOF value was almost constant at a certain temperature. This directly proved that the Mn⁴⁺ species were the active sites of catalysts for the NH₃-SCR reaction.

TOF calculation formula:

$$TOF = \frac{Converted \ NO \ (mol \ / \ s)}{Active \ sites \ number \ (mol)}$$

$$Converted \ NO \ (mol \ / \ s) = \frac{500 \ ppm \ \times \ conversion \ (\%) \times \ flow \ rate \ (L \ / \ s)}{22.4 \ L \ mol}$$
where flow rate=200 mL/min=1/300 (L/s).

Active sites number (mol) = $(m_{MnO2}/M_{MnO2}) \times \eta$

where m_{MnO2} stands for the mass of the grown MnO₂ on the hollow fibers, M_{MnO2} represents the molecular weight of MnO₂ (86.9 g/mol) and is the portion of Mn⁴⁺, which is determined by XPS analysis.

Fig. S6. NH₃-TPD profiles of MnFe(0), MnFe(0.05) and MnFe(0.15).

Fig. S6 showed the NH₃-TPD results over FeMn(0), FeMn(0.05) and FeMn(0.15) catalysts in the range of 100-500 °C. NH₃ desorption was observed over a wide temperature range, the peaks at lower temperature were caused by the desorption of physisorbed NH₃; while the peaks centered at 180-230 °C were caused by the desorption of coordinated NH₃ bound to Lewis acid sites, at the higher temperature were assigned to NH₃ strongly adsorbed on the Brønsted acid sites.⁴⁻⁶ Besides all the desorption peaks slightly moved to the low temperature edge, it seemed that the Mn substitution of Fe did not obviously influence the NH₃ adsorption ability of these catalysts, but the amount of NH₃ adsorption increased gradually, which may be due to the increase of BET surface area and strong adsorption for NH₃ of the Mn species. In SCR reaction, chemical adsorbed NH₃ species were considered to be the important intermediates, so the increase of them at higher Mn content had a positive effect on NO conversion.

References:

- 1. A Shi, X Wang, T Yua and M Shen, Appl. Catal. B., 2011, 106, 359-369.
- 2. Z. Ren, Y. Guo, Z. Zhang, C. Liu and P.X. Gao, J. Mater. Chem. A., 2013, 1, 9897-9906.
- 3. F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie and T. Hu, Appl. Catal. B., 2010, 96 408-420.
- 4. F. Liu, H. He, Y. Ding and C. Zhang, Appl. Catal. B., 2009, 93, 194-204
- 5. F. Bin, C.Song, G. Lv, J. Song, X. Cao, H. Pang and K. Wang, J. Phys. Chem. C 2012, 116, 26262-26274.
- 6. B. Jiang, B. Deng, Z. Zhang, Z. Wu, X. Tang, S. Yao and Hao Lu, J. Phys. Chem. C., 2014, **118**, 14866-14875.