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Experimental Part (supplementary information) 

 

Synthesis of [(C4H9)4N]2[Ni(CN)4].  

All precursors for the infiltration are commercial except the (C4H9)4N[Ni(CN)4] that is prepared by a metathesis 

reaction. 10 mmol of K2[Ni(CN)4] and 20 mmol of (C4H9)4NBr (TBABr) are dissolved into the biphasic system (50 

vol% of distilled water and 50 vol% of organic solvent – CH2Cl2 or CHCl3) and agitation is performed for 1 hour 

with a rotor driver at room temperature. The organic phase is separated through a separator funnel and dried with 

MgSO4. The organic solvent is evaporated under reduced pressure at P = 300 mbar and T = 50 °C. In order to 

eliminate the excess of  TBABr the compound is purified in hot diethyl ether at 50 °C for 3 H and filtered. The final 

product is dried in oven at 80 °C. Final aspect: pale orange. IR ( KBr, cm-1): (cyanide) 2109. 

 

Experimental determination of the entrapped amount of iodine. 

To perform all entrapment tests in solution with the hybrid materials (kinetics and isotherms), a fixed powder-to-volume 

ratio was chosen in order to compare all data: 20 mg of material per 20 ml of solution. The entrapments were performed 

rigorously in round bottom flasks, since iodine showed a certain reactivity toward all plastics and metallic surfaces. The 

flasks were hermetically closed to avoid evaporation of the solution. 

The entrapped amount was determined by UV-VIS spectroscopy, by measuring the maximal absorbance (A) at  = 525 nm 

before and after the entrapment test, in standard cuvettes (width of 1 cm). The concentrations were obtained by dividing the 

absorbance by the experimental value of 929.61 L.mol-1. For concentrations over 10-3 M a dilution was necessary to avoid 

saturation at the spectrometer. Then the calculated concentrations were used in the following formula, in order to obtain the 

entrapped amount in the chosen unit [mmol.g-1], i.e. mmol of entrapped I2 per unit mass of employed powder: 

 

 
 

where C1 is the iodine concentration before entrapment expressed in [mol.L-1]; C2 is the iodine concentration after entrapment 

expressed in [mol.L-1]; V is the volume of the solution in [L] and m is the mass of the powder expressed in [g]. 

 

Linearized models for the kinetics and the isotherms in solution. 

 

For the kinetic study a pseudo-second order model was used to describe the trend, since it successfully approximates the 

sorption processes onto solid adsorbents. In order to fit the experimental Q vs t curve, the following equation was employed: 
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where t is the time; Q is the entrapped amount at time t; Qe is the entrapped amount at the equilibrium and k is the kinetic 

constant. By tracing the regression curve the constants Qe and k can be determined from the slope and the intercept. 

For the isotherms the Langmuir model was considered suitable to describe the experimental Q vs C curves, since the maximal 

iodine adsorption was limited at the first monolayer on the solids. The linear shape for the Langmuir model is: 

 

 

Where C is the equilibrium concentration; Q is the entrapped amount at concentration C; Qmax is the entrapped amount at 

saturation conditions and K is the Langmuir constant (or sorption heat). By tracing the regression curve the constants Qmax 

and K can be determined from the slope and the intercept. 

 

  



 

 

Figure S1. Pictures of glass pearls based samples: 1) grafted glass pearls (Glass); 2) Glass@NP; 3) grafted glass pearls 

(Glass) after iodine uptake; 4) Glass@NP after iodine uptake. 
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Figure S2. TGA curves for: a) functionalised mesoporous silica (Sil), Sil@NP nanocomposite,  Sil@NP 

nanocomposite after iodine loading/desorption and the bulk Hofmann clathrate NiII(pz)[NiII(CN)4]; b) functionalised 

glass pearls, Glass@NP nanocomposite, Glass@NP nanocomposite after iodine loading/desorption and the bulk 

Hofmann structure NiII(pz)[NiII(CN)4]; c) functionalised mesoporous silicas, Sil@NP nanocomposite and the bulk 

Hofmann structure NiII(pz)[NiII(CN)4] after iodine uptake; d) functionalised glass pearls, Glass@NP nanocomposite 

and the bulk Hofmann structure NiII(pz)[NiII(CN)4] after iodine uptake.  

Note that TGA curves indicated that the diamine functionality is stable up to 250 °C and the nanoparticles are stable 

up to 300 °C. TGA curves of the iodine-loaded materials indicate the start of iodine loss at 250 °C for Sil and at 150 

°C for Sil@NP; the difference is explained by the presence of I3
- in the former and predominantly I2 in the latter.  In 

the case of glass beads, iodine is desorbed at 150 °C for both, Glass and Glass@NP, since partial decomposition of 

I5
- occurs too.  
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Fig S3. Nitrogen adsorption isotherms at 77 K for the glass pearls before, after diamine groups grafting and glass 

pearls based nanocomposite Glass@NP. Inset: pore size distribution for the glass pearls before, after diamine 

groups grafting and nanocomposite Glass@NP. 
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Figure S4. UV-VIS spectra for functionalised glass pearls, Glass@NP nanocomposite and the bulk Hofmann 

clathrate NiII(pz)[NiII(CN)4] before and after iodine uptake.  
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Figure S5. Cyanide bands in the 2250 – 2000 cm-1 range of the FT-IR spectra of the bulk NiII(pz)[NiII(CN)4], 

Sil@NP and Glass@NP before and after iodine uptake.  
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Figure S6. Kinetic curves for the grafted glass pearls, Glass@NP nanocomposite, and the bulk clathrate in a 

cyclohexane solution. The solid lines represent the fits with a pseudo-second order model.  
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Figure S7. Iodine absorption isotherms in a cyclohexane solution for the grafted glass pearls, the Glass@NP 

nanocomposite and the bulk clathrate. The solid lines represent the fit with the Langmuir model.  
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Figure S8. Reversibility of cyanide band (CN) at thermal desorption of iodine and degradation at 300°C for 

Sil@NP and Glass@NP. 
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Figure S9. UV-Vis spectra demonstrating the cycling ability for the Glass@NP nanocomposite. 

 


