ELECTRONIC SUPPORTING INFORMATION

Nanocomposites based on Hofmann's clathrate Ni^{II}(pz)[Ni^{II}(CN)₄] (pz = pyrazine) nanoparticles for reversible iodine capture.

Giovanni Massasso,^a Maria Rodriguez-Castillo,^a Jerôme Long,^a Agnès Grandjean,^b Barbara Onida,^c Yannick Guari,^{*a} Christian Guerin^a and Joulia Larionova^a

(a) Institut Charles Gerhardt Montpellier, ICGM, UMR 5253 CNRS-UM2-ENSCM-UM1, Chimie Moléculaire et Organisation du Solide, Université Montpellier II, Place E. Bataillon, 34095, Montpellier cedex 5, France.

(b) CEA/DEN/DTCD/SPDE, Laboratoire des Procédés Supercritiques et de Décontamination, ICSM, UMR 5257 CEA-CNRS-UM2-ENSCM, BP 17171, 30207 Bagnols sur Cèze, France.
(c) Institute of Chemistry, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Experimental Part (supplementary information)

Synthesis of [(C₄H₉)₄N]₂[Ni(CN)₄].

All precursors for the infiltration are commercial except the $(C_4H_9)_4N[Ni(CN)_4]$ that is prepared by a metathesis reaction. 10 mmol of $K_2[Ni(CN)_4]$ and 20 mmol of $(C_4H_9)_4NBr$ (TBABr) are dissolved into the biphasic system (50 vol% of distilled water and 50 vol% of organic solvent – CH_2Cl_2 or $CHCl_3$) and agitation is performed for 1 hour with a rotor driver at room temperature. The organic phase is separated through a separator funnel and dried with MgSO₄. The organic solvent is evaporated under reduced pressure at P = 300 mbar and T = 50 °C. In order to eliminate the excess of TBABr the compound is purified in hot diethyl ether at 50 °C for 3 H and filtered. The final product is dried in oven at 80 °C. Final aspect: pale orange. IR (KBr, cm⁻¹): (cyanide) 2109.

Experimental determination of the entrapped amount of iodine.

To perform all entrapment tests in solution with the hybrid materials (kinetics and isotherms), a fixed powder-to-volume ratio was chosen in order to compare all data: 20 mg of material per 20 ml of solution. The entrapments were performed rigorously in round bottom flasks, since iodine showed a certain reactivity toward all plastics and metallic surfaces. The flasks were hermetically closed to avoid evaporation of the solution.

The entrapped amount was determined by UV-VIS spectroscopy, by measuring the maximal absorbance (*A*) at $\lambda = 525$ nm before and after the entrapment test, in standard cuvettes (width of 1 cm). The concentrations were obtained by dividing the absorbance by the experimental value of 929.61 L.mol⁻¹. For concentrations over 10⁻³ M a dilution was necessary to avoid saturation at the spectrometer. Then the calculated concentrations were used in the following formula, in order to obtain the entrapped amount in the chosen unit [mmol.g⁻¹], *i.e.* mmol of entrapped I₂ per unit mass of employed powder:

$$Q[mmol, g^{-1}] = \frac{(C_1 - C_2) \cdot V}{m} \cdot 1000$$

where C_1 is the iodine concentration before entrapment expressed in [mol.L⁻¹]; C_2 is the iodine concentration after entrapment expressed in [mol.L⁻¹]; *V* is the volume of the solution in [L] and *m* is the mass of the powder expressed in [g].

Linearized models for the kinetics and the isotherms in solution.

For the kinetic study a pseudo-second order model was used to describe the trend, since it successfully approximates the sorption processes onto solid adsorbents. In order to fit the experimental Q vs t curve, the following equation was employed:

$$\frac{t}{Q} = \frac{1}{kQ_s^2} + \frac{t}{Q_s}$$

where *t* is the time; *Q* is the entrapped amount at time *t*; Q_e is the entrapped amount at the equilibrium and *k* is the kinetic constant. By tracing the regression curve the constants Q_e and *k* can be determined from the slope and the intercept. For the isotherms the Langmuir model was considered suitable to describe the experimental Q vs C curves, since the maximal iodine adsorption was limited at the first monolayer on the solids. The linear shape for the Langmuir model is:

$$\frac{1}{Q} = \frac{1}{Q_{max}} + \frac{1}{KQ_{max}} \frac{1}{C}$$

Where C is the equilibrium concentration; Q is the entrapped amount at concentration C; Q_{max} is the entrapped amount at saturation conditions and K is the Langmuir constant (or sorption heat). By tracing the regression curve the constants Q_{max} and K can be determined from the slope and the intercept.

Figure S1. Pictures of glass pearls based samples: 1) grafted glass pearls (*Glass*); 2) *Glass@NP*; 3) grafted glass pearls (*Glass*) after iodine uptake; 4) *Glass@NP* after iodine uptake.

b)

Figure S2. TGA curves for: a) functionalised mesoporous silica (*Sil*), *Sil@NP* nanocomposite, *Sil@NP* nanocomposite after iodine loading/desorption and the bulk Hofmann clathrate Ni^{II}(pz)[Ni^{II}(CN)₄]; b) functionalised glass pearls, *Glass@NP* nanocomposite, *Glass@NP* nanocomposite after iodine loading/desorption and the bulk Hofmann structure Ni^{II}(pz)[Ni^{II}(CN)₄]; c) functionalised mesoporous silicas, *Sil@NP* nanocomposite and the bulk Hofmann structure Ni^{II}(pz)[Ni^{II}(CN)₄] after iodine uptake; d) functionalised glass pearls, *Glass@NP* nanocomposite and the bulk Hofmann structure Ni^{II}(pz)[Ni^{II}(CN)₄] after iodine uptake.

Note that TGA curves indicated that the diamine functionality is stable up to 250 °C and the nanoparticles are stable up to 300 °C. TGA curves of the iodine-loaded materials indicate the start of iodine loss at 250 °C for *Sil* and at 150 °C for *Sil@NP*; the difference is explained by the presence of I_3 in the former and predominantly I_2 in the latter. In the case of glass beads, iodine is desorbed at 150 °C for both, *Glass* and *Glass@NP*, since partial decomposition of I_5 occurs too.

Fig S3. Nitrogen adsorption isotherms at 77 K for the glass pearls before, after diamine groups grafting and glass pearls based nanocomposite *Glass@NP*. Inset: pore size distribution for the glass pearls before, after diamine groups grafting and nanocomposite *Glass@NP*.

Figure S4. UV-VIS spectra for functionalised glass pearls, Glass@NP nanocomposite and the bulk Hofmann clathrate Ni^{II}(pz)[Ni^{II}(CN)₄] before and after iodine uptake.

Figure S5. Cyanide bands in the 2250 – 2000 cm⁻¹ range of the FT-IR spectra of the bulk $Ni^{II}(pz)[Ni^{II}(CN)_4]$, *Sil@NP* and *Glass@NP* before and after iodine uptake.

Figure S6. Kinetic curves for the grafted glass pearls, *Glass@NP* nanocomposite, and the bulk clathrate in a cyclohexane solution. The solid lines represent the fits with a pseudo-second order model.

Figure S7. Iodine absorption isotherms in a cyclohexane solution for the grafted glass pearls, the *Glass@NP* nanocomposite and the bulk clathrate. The solid lines represent the fit with the Langmuir model.

Figure S8. Reversibility of cyanide band v(CN) at thermal desorption of iodine and degradation at 300°C for Sil@NP and Glass@NP.

Figure S9. UV-Vis spectra demonstrating the cycling ability for the *Glass@NP* nanocomposite.