Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution

Yuan Pan, Yanru Liu, Jinchong Zhao, Kang Yang, Jilei Liang, Dandan Liu, Wenhui Hu, Dapeng Liu,

Yunqi Liu*, Chenguang Liu

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National

Petroleum Corporation (CNPC), China University of Petroleum, 66 West Changjiang Road, Qingdao,

Shandong 266580, P. R. China

^{*} Corresponding author. E-mail address: <u>liuyq@upc.edu.cn</u>.

Tel.: +86-532-86981861.

Fig. S1 EDX spectra of nickel phosphide NCs with different phases (a) $Ni_{12}P_5$, (b)

Ni₂P and (c) Ni₅P₄ NCs.

Fig. S2 XPS spectra in the (a) Ni(2p) and (b) P(2p) regions for Ni₁₂P₅ NCs, (d) Ni(2p) and (e) P(2p) regions for Ni₂P NCs, (g) Ni(2p) and (h) P(2p) regions for Ni₅P₄ NCs after 0, 5, 10, 20, 30 and 40 min Ar⁺ etching. Inserted in (g) is an expansion Ni(2p) region for Ni₅P₄ NCs after 0 min Ar⁺ etching. The peaks for oxidized Ni and P species decrease while the peaks for Ni₁₂P₅, Ni₂P and Ni₅P₄ increase after 5 min Ar⁺ etching. The oxidized Ni and P species nearly completely removed after 10 min Ar⁺ etching. (c), (f) and (i) are the corresponding XPS depth profiles of Ni and P elements for the Ni₁₂P₅, Ni₂P and Ni₅P₄ NCs, respectivly.

Catalyst	Current density	Potential	Electrolyte	Tafel slope	Reference
	(mA·cm ⁻²)	(mV)		$(mV \cdot dec^{-1})$	
Ni12P5 hollow NPs	10	208	0.5 M H ₂ SO ₄	75	This work
Ni ₂ P hollow NPs	10	137	0.5 M H ₂ SO ₄	49	This work
Ni5P4 solid NPs	10	118	0.5 M H ₂ SO ₄	42	This work
CoP NWs	10	110	0.5 M H ₂ SO ₄	54	22
CoP NSs	10	164	0.5 M H ₂ SO ₄	61	22
CoP NPs	44410	221	0.5 M H ₂ SO ₄	87	22
Amorphous MoP	10	90	0.5 M H ₂ SO ₄	45	23
Bulk CoP	30	180	0.5 M H ₂ SO ₄	54	13
FeP NSs	10	240	0.5 M H ₂ SO ₄	67	24
Ni ₂ P hollow NPs	10	116	0.5 M H ₂ SO ₄	46	14
Ni ₂ P NPs	20	140	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	87	25
Ni ₁₂ P ₅ NPs	20	141	0.5 M H ₂ SO ₄	63	15
Ni ₂ P/Ti	20	138	1 M H ₂ SO ₄	60	44
NiP ₂ NS/CC	20	99	0.5 M H ₂ SO ₄	51	45
CoP/CNT	10	122	0.5 M H ₂ SO ₄	54	41d
MoP-CA2 NPs	10	125	0.5 M H ₂ SO ₄	54	42b
CoP NPs/CC	10	48	0.5 M H ₂ SO ₄	70	49
CoP/Ti	10	90	0.5 M H ₂ SO ₄	43	41c
MoP/CF	100	200	0.5 M H ₂ SO ₄	67.4	42a

Table S1 Comparison of HER activity of some transition metal phosphides.

Cu ₃ P NW/CF	10	143	0.5 M H ₂ SO ₄	67	43
	20	100	0.5 M H ₂ SO ₄	51	
CoP/CC	2	65	1M PBS	93	41b
	10	209	1M KOH	129	
CoP NTs	10	129	0.5 M H ₂ SO ₄	60	41a
np-CoP NWs/Ti	20	95	0.5 M H ₂ SO ₄	65	50
FeP NA/Ti	20	72	0.5 M H ₂ SO ₄	38	46

Catalyst	log(j (mA·cm ⁻²)) at η=0 V	Exchange current densities $j_0 [\mu A \cdot cm^{-2}]$
Ni ₁₂ P ₅	-1.544	28.57
Ni ₂ P	-1.338	45.92
Ni ₅ P ₄	-1.244	57.02

Table S2 Calculations of the exchange current densities of $Ni_{12}P_5$, Ni_2P and Ni_5P_4 NCs by using extrapolation methods.