Supporting information (SI)

Observation of lithiation induced structural variations in TiO₂ nanotube arrays by X-ray absorption fine structures

Dongniu Wang, ^{1,2} Lijia Liu, ³ Xueliang Sun^{2*} and Tsun-Kong Sham^{1*}

¹Department of Chemistry, Western University, London, Ontario, N6A 5B7 Canada.

²Department of Mechanical and Materials Engineering, Western University, London, Ontario, N6A 5B9 Canada.

³Soochow-Western Center for Synchrotron Radiation Research, Soochow University, and Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, Jiangsu, 215123 China

Figure S1 EDS spectra of the amorphous TiO₂ NT.

Figure S2 2-D display of excitation energy across the Ti L_{3,2}-edge and O K edge (yaxis) vs. fluorescence/scattered X-ray energy (x-axis) from Ti and O detected with a silicon drift detector (SDD). The fluorescence X-ray energy from Ti L_{3,2} shell and O K shell, respectively, are marked with a vertical dotted line with the intensity colour coded. The Ti L and O K edge XANES is also shown (black trace).

Figure S3 O K edge XANES of Li₂CO₃ powder.

Figure S4 FLY spectrum of amorphous TiO₂ rooted on Ti foil.

Figure S5 First derivative spectra of Ti K edge XAFS for amorphous and anatase TiO₂, both before and after lithiation

Figure S6. Ti K-edge EXAFS spectra (k^3 -weighted) of (a) anatase and (b) amorphous TiO₂ both before and after lithiation.