Electronic Supplementary Information for

Tailoring the Water Adsorption Properties of MIL-101 Metal-Organic Frameworks by Partial Functionalization

Nakeun Ko,^{*a*} Pan Gyu Choi,^{*a*} Jisu Hong,^{*a*} Miso Yeo,^{*a*} Siyoung Sung,^{*a*,*} Kyle E. Cordova,^{*b*} Hye Jeong Park,^{*a*} Jin Kuk Yang,^{*a*,*} and Jaheon Kim ^{*a*,*}

^{*a*} Institute for Integrative Basic Sciences and Department of Chemistry, Soongsil University, Seoul 156-743, Korea. Fax: +82 2 824 4383; Tel: +82 2 820 0459; E-mail: gllruk123@gmail.com (S. S.), jinkukyang@ssu.ac.kr (J.K.Y.), jaheon@ssu.ac.kr (J.K.)

^{*b*} Center for Molecular and NanoArchitecture, Vietnam National University – Ho Chi Minh City, 721337, Vietnam.

General Procedures

All chemicals and solvents used in the syntheses of compounds were of reagent grade and used without further purification. $Cr(NO_3)_2 \cdot 9H_2O$, $CrCl_3$, $SnCl_2$, tetramethylammonium hydroxide (TMOH), benzene-1,4-dicarboxylic acid (H₂BDC), 1,5-dihydroxynaphthalene, bromine, ethyl isocyanate (Et-NCO), maleic anhydride, 1,3-propanesultone, and benzene-1,2,4-tricarboxylic acid (H₃2-BTC) were purchased from Sigma-Aldrich. Powder X-ray diffraction (PXRD) data were collected on a Rigaku MiniFlex diffractometer with CuK α radiation ($\lambda = 1.5418$ Å). Thermogravimetric analyses (TGA) were carried out using a Scinco TGA-S1000 thermal analysis system under air with a temperature-increasing rate of 5 °C/min. NMR spectra were obtained on a Bruker 400 MHz NMR spectrometer. The N₂ adsorption isotherms were measured using the standard volumetric procedure on a BELSORP-mini (BEL-Japan, INC.). All samples were activated under vacuum at 180 °C for 6 h before the sorption measurements.

Fig. S1 PXRD patterns of MIL-101 and its derivatives. The broad peaks at $2\theta = 12^{\circ}$ are due to the coated silicon grease on sample holders.

Fig. S2 Water vapor sorption isotherm of MIL-101 (1). Filled and empty symbols correspond to adsorption and desorption points, respectively.

Fig. S3 Water vapor sorption isotherm of MIL-101-NH₂ (2).

Fig. S4 Water vapor sorption isotherm of MIL-101-*p*UR2 (3).

Fig. S5 Water vapor sorption isotherm of MIL-101-*p*Mal (4)

Fig. S6 Water vapor sorption isotherm of MIL-101-*p*3SO₃H (5).

Fig. S7 Water vapor sorption isotherm of MIL-101-*p*COOH (6a).

Fig. S8 Water vapor sorption isotherm of MIL-101-*p*COOH (6b).

Fig. S9 Water vapor sorption isotherms of (a) MIL-101-*p*COOH (**6a**) and (b) MIL-101-*p*COOH (**6b**) obtained respectively for the repeated measurements using the sample samples.

Fig. S10 PXRD patterns for (a) MIL-101-*p*COOH (**6a**) and (b) MIL-101-*p*COOH (**6b**) obtained respectively after the repeated water sorption measurements or water immersion up to six days.