## Electronic Supplementary Information to Manuscript "Origin of Non-SEI

## Related Coulombic Efficiency Loss in Carbons Tested Against Na and Li"

Elmira Memarzadeh Lotfabad<sup>a,b\*</sup>, Peter Kalisvaart<sup>a,b</sup>, Alireza Kohandehghan<sup>a,b</sup>, and David Mitlin<sup>a,b,\*</sup>

<sup>a</sup>University of Alberta Department of Chemical & Materials Engineering, 9107 116th Street, T6G

2V4, Edmonton AB, Canada

<sup>b</sup>National Institute for Nanotechnology (NINT), National Research Council of Canada, Edmonton,

Alberta T6G 2M9, Canada



**Figure S1**: (a) SEM micrograph of the final carbon. The pore size distributions, calculated using density functional theory (DFT) model from the adsorption branch, with the inset showing nitrogen adsorption-desorption isotherms are shown in Figure S1(b), (c) Raman spectra, (d) XRD pattern, (e) fit between 15 and 35° and (f) X-ray photoelectron spectroscopy (XPS) result.

|                          | elemental analysis |       |       |       | XPS   |       |       |       |       |
|--------------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Pyrolysis<br>Temperature | С                  | 0     | Ν     | Η     | С     | 0     | Ν     | Si    | Cl    |
|                          | [wt%]              | [wt%] | [wt%] | [wt%] | [wt%] | [wt%] | [wt%] | [wt%] | [wt%] |
| 1400                     | 92.42              | 3.98  | 0.19  | 0.16  | 92.53 | 5.55  | 0.48  | 1.3   | 0.14  |

Table S1. Elemental composition information, XPS performed on as-synthesized powders

**Table S2.** XPS results on samples that were mechanically ground after synthesis so as to expose

bulk material to surface analysis

| XPS after grinding       |       |       |       |       |       |       |       |       |  |  |  |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| Pyrolysis<br>Temperature | K     | Mg    | Р     | С     | 0     | Ν     | Si    | Cl    |  |  |  |
|                          | [wt%] |  |  |  |
| 1400                     | 0.82  | 0.1   | 0.06  | 91.82 | 5.53  | 0.39  | 1.08  | 0.2   |  |  |  |



Figure S2: CV charge profiles of the electrode versus Na.and galvanostatic discharge/



**Figure S3:** (a) XRD patterns at different discharge and charge voltages (vs. Na/Na<sup>+</sup>) during the 2<sup>nd</sup> cycle. (b) Raman spectra at different discharge and charge voltages (vs. Na/Na<sup>+</sup>) during the 2<sup>nd</sup> cycle.



**Figure S4:** XPS survey spectra vs. potential (a) during the 1<sup>st</sup>, and (b) 2<sup>nd</sup> and 5<sup>th</sup> cycles after removal of SEI. (c) XPS survey spectra vs. potential during the 1<sup>st</sup> cycle without removal of SEI.



**Figure S5:** C 1s XPS spectra vs. potential (Na/Na<sup>+</sup>) after removal of SEI of BPPG-1400, (a) during the 1<sup>st</sup> cycle, and (b) 2<sup>nd</sup> and 5<sup>th</sup> cycles. (c) Na 1s XPS spectra vs. potential during 2<sup>nd</sup> and 5<sup>th</sup> cycles.



**Figure S6:** (a) Galvanostatic discharge/charge profiles of the electrode versus Li/Li<sup>+</sup>. (b) XRD patterns at different discharge and charge voltages (vs. Li/Li<sup>+</sup>) during the 2<sup>nd</sup> cycle. (c) Interlayer graphene spacing for the minority equilibrium graphite phase vs. potential for cycle 1, 2 and 5. (d) Raman spectra at different discharge and charge voltages vs. Li/Li<sup>+</sup> during the 2<sup>nd</sup> cycle



**Figure S7:** Deconvolution of XRD patterns during the first (a) and second (b) lithiation for potentials >0.001 V. The Li (110) reflection is visible around 36.2°



**Figure S8:** C 1s XPS spectra vs. potential (Li/Li<sup>+</sup>) after removal of SEI of BPPG-1400, (a) during the 1<sup>st</sup> cycle, and (b) 2<sup>nd</sup> and 5<sup>th</sup> cycles (c) Li 1s XPS spectra vs. potential during 2<sup>nd</sup> and 5<sup>th</sup> cycles



**Figure S9:** XPS survey spectra vs. potential (a) during the 1<sup>st</sup>, and (b) 2<sup>nd</sup> and 5<sup>th</sup> cycles after removal of SEI. (c) XPS survey spectra vs. potential during the 1<sup>st</sup> cycle without removal of SEI.