Supplementary Information

Journal of Materials Chemistry A

Addressing the light-soaking issue in inverted organic solar cells using chemical bath deposited fluorinated TiO_x electron transport layer

Fang Jeng Lim, Ying Ting Set, Ananthanarayanan Krishnamoorthy, Jianyong Ouyang, Joachim Luther, Ghim Wei Ho

Rough Calculation of outdoor light soaking (Based on Singapore weather information)

Figure S1 (a) Typical solar irradiance at function of time for a typical sunny day at Singapore; (b) Indoor light soaking calculation with assumption of 10 minutes of light soaking time; (c) Outdoor light soaking calculation by equating the area obtained from (b) and calculate the corresponding light soaking time required.

Assumptions:

- (1) 100% conversion of photon to electron in solar cells
- (2) Intensity is proportional to the number of photons, and proportional to the light soaking time.
 [i.e. Intensity ∝ Photon density ∝ Electron density ∝ time]
- (3) Identical irradiance wavelength spectrum between indoor and outdoor
- (4) Same area of device is used

We found that if a device requires 8 minutes of light-soaking treatment, it would require at

least, if not more than, 1 hour 10 minutes of light-soaking in outdoor applications. Note that this treatment has to be done *every morning* throughout the entire lifetime of the device.

Optimization of precursor concentration of chemical bath deposited F-TiO_x

The concentration of $(NH_4)_2TiF_6$ was varied from 0.01M to 0.2M while keeping the concentration of H_3BO_3 fixed at 0.2 M at bath temperature of 40°C. The resulting thickness and deposition rate of F-TiO_x are summarized in Figure S2 and Table S1. When the $(NH_4)_2TiF_6$ concentration is low (0.01 M - 0.02 M), the film growth is non-linear, and the film thickness saturates at 40 nm after 1 hour and 80 nm after 2 hours, respectively. F-TiO_x film forms at the initial reaction due to F- scavenging action by H_3BO_3 but subsequently halts due to inadequate TiF_6^{2-} ions for F-TiO_x formation. The deposition rate increases as $(NH_4)_2TiF_6$ concentration further increases from 0.01 M to 0.05 M, and gradually decreases as the precursor concentration further increases. The highest deposition rate of 65 nm/h occurs at 0.05 M (NH_4)₂TiF₆ and 0.2 M H_3BO_3 . When the concentration is increased, the rate of TiO_x film formation will decrease due to low F-scavenging rate caused by a lesser amount of BO_3^{3-} ions, which will shift the reaction equilibrium (reaction (c)) to the left. Since the desired thickness for electron transport layer of OSC ranges from 20 to 130 nm ^[1-4], $(NH_4)_2TiF_6$ with concentration between 0.05 M to 0.15 M is of particular interest.

Figure S2 (a) Deposition thickness over 4 hours and; (b) Deposition rate of deposited TiO_x under various Ti precursor concentration and fixed 0.2 M H₃BO₃ concentration at a bath of 40°C

Conc. of H ₃ BO ₃ (M)	Deposition rate (±5 nm h ⁻¹)	Remarks
	37	Saturates after 1 h
	43	Saturates after 2 h
0.2	63	
	65	
	53	Linear growth
	42	-
	34	-
	Conc. of H ₃ BO ₃ (M)	Conc. of H ₃ BO ₃ (M) Deposition rate ($\pm 5 \text{ nm h}^{-1}$) 37 43 63 0.2 65 53 42 34

Table S1 Growth of the chemical bath deposition with various (NH₄)₂TiF₆ concentration and fixed 0.2 M of H₃BO₃ at 40°C

By correlating the deposition rate and the morphology, two conclusions can be made. The optimal concentrations for the precursors are 0.1 M of $(NH_4)_2 TiF_6$ and 0.2 M of H_3BO_3 . In this concentration regime, both the desired morphology and the thickness can be achieved to produce an efficient ETL for IOSC device with minimal recombination losses.

XRD spectra

Figure S3 XRD spectra of ITO only (black), sol-gel coated TiOx (80 nm) on ITO (red) and chemical bath deposited F-TiO_x (80 nm) on ITO (green). The peaks only show presence of ITO, implying the deposited TiO_x films, regardless of solgel or chemical bath deposition, are amorphous.

Tauc plot for estimation of bandgap energy

Figure S4 Tauc plot from the respective absorption spectra for sol-gel TiO_x (0 % F conc., black), as-prepared F-TiO_x (1.3 % F conc., red. The estimated bandgap energy (3.4 eV) was used to estimate the conduction band (CB) for band diagram construction.

Fitting function for calculating light soaking time

The light soaking time (τ_{soak}) was determined by fitting the experimental data in Figure 4(c) with a logistic function shown in Equation S1. The fitting was done using Origin Pro 9.0. The fitted parameters were tabulated in Table S2. τ_{soak} was then obtained by defining $PCE(\tau_{soak}) = 0.95PCE_{max}$ and mapped back to the experimental data of Figure 4(c).

$$PCE(t) = \frac{A_0 - A_1}{1 + (t/\tau_0)^p} + A_1$$
 S1

Table S2 Fitting parameters of various TiO_x in inverted organic solar cells based on equation S1.

Electron transport layer	F at %	A ₀	A_1	$ au_0$	р	τ _{soak}
Sol-gel TiO _x	0	0	1.0	89	1.8	450
CBD F-TiO _x (as prepared)	1.3	0	1.0	11	2.5	35
CBD F-TiO_x (NaOH treated)	1.5	0	1.0	175	2.8	520
CBD F-TiO_x (H₂O treated)	1.7	0	1.0	27	2.1	110

References

[1] T. Kuwabara, H. Sugiyama, M. Kuzuba, T. Yamaguchi, K. Takahashi. *Organic Electronics*. **2010.** *11(6)*, 1136-1140.

[2] H. Sun, J. Weickert, H. C. Hesse, L. Schmidt-Mende. *Phys Chem Chem Phys.* 2011. 95(12), 3450-3454.

[3] E. Berner, T. Jager, T. Lanz, F. Nuesch, J. N. Tisserant, G. Wicht, H. Zhang, R. Hany. *Applied Physics Letters.* **2013.** *102(18)*, 4.

[4] F. J. Lim, A. Krishnamoorthy, J. Luther, G. W. Ho. J. Mater. Chem. 2012. 22(48), 25057-25064.