SUPPLEMENTARY INFORMATION

Preparation of Single-PhaseThree-Component Alkaline Earth Oxide of (BaSrMg)O: High Capacity and Thermally Stable Chemisorbent for Oxygen Separation

Xuncai Chen,^a TaesungJung,^b Jongho Park,^{*b} Woo-Sik Kim^{*a}

^a Department of Chemical Engineering, ILRI, Kyung Hee University, Yoing Kiheungku Seochun-dong, Kyungki-do 449-701, Republic of Korea ^bKorea Institute of Energy Research, 71-2, Jangdong, Yuseong-gu, Daejeon, Republic of Korea

position	At%			
	Mg	Ba	Sr	
cross-section	41.97	52.00	6.03	
surface	41.93	51.49	6.58	

Table S1. Element analysis of (BaSrMg)CO₃ crystal in different positions using EDS: cross-section and surface.

Table S2. Element analysis of (BaSr)CO₃ crystals using EDS and ICP.

Detector	At%		
	Ba	Sr	
EDS	80.09	19.91	
ICP	77.54	22.46	

Table 3. Element analysis of (BaSrMg)CO₃ crystals synthesized at the different reactant concentration ratio of [Mg(NO₃)₂]/[(BaSr)CO₃] using EDS.

Reactant Concentration Ratio	Product Crystals		
	At %		
[Mg(NO ₃) ₂]:[(BaSr)CO ₃]	Ва	Sr	Mg
0.5	51.70	5.67	42.63
0.6	50.89	5.21	43.9
0.7	52.49	6.00	41.51
0.8	50.44	6.24	43.32
0.9	51.41	5.97	42.62
1.0	51.49	6.58	41.93

Figure S1. Analysis of (BaSrMg)CO₃ crystal cross-section by using FE-SEM and EDS.
(a) cross-sectional image of (BaSrMg)CO₃ crystal by FE-SEM, and (b) element analysis at cross-section of (BaSrMg)CO₃ crystal by EDS.

Figure S2. XRD pattern of (BaSrMg)CO₃ crystals comparing with JCPDS data of BaCO₃ (JCPDS number:05-0378), SrCO₃ (JCPDS number:05-0418), and MgCO₃ (JCPDS number:08-0479).

Figure S3. Analysis of (BaSr)CO₃ crystals by FE-SEM and EDS.

Figure S4. Analysis of solid mixture produced at reactant concentration ratio of [Mg(NO₃)₂]/[(BaSr)CO₃]=0.6 by FE-SEM and EDS, (a) needle-shaped (BaSr)CO₃ crystals and (b) hexagon-shaped (BaSrMg)CO₃ crystals.

Figure S5. Effect of reactant concentration ratio, [Ba(NO₃)₂]/[Sr(NO₃)₂], on coprecipitation of (BaSr)CO₃. (a) reactant concentration ratio of 0.9:0.1, (b) reactant concentration ratio of 0.8:0.2, (c) reactant concentration ratio of 0.7:0.3, (d) reactant concentration ratio of 0.6:0.4, (e) reactant concentration ratio of 0.5:0.5, (f) reactant concentration ratio of 0.4:0.6, (g) reactant concentration ratio of 0.3:0.7, (h) reactant concentration ratio of 0.2:0.8.

Figure S6. XRD patterns of (BaSr)CO₃ crystals synthesized at the different reatant concentration ratio of [Ba(NO₃)₂]/[Sr(NO₃)₂].

Figure S7. Effect of reactant temperature on co-precipitation of (BaSrMg)CO₃ crystals. (a) 50 °C, (b) 60 °C, (c) 70 °C, (d) XRD patterns of product crystals.

Figure S8. Effect of reactant concentration of (NH₄)₂CO₃ on co-precipitation of (BaSrMg)CO₃ crystals. (a) 0.08 g/mL, (b) 0.12 g/mL.