Supplementary materials

Sandwich-Like Cr₂O₃-Graphite Intercalation Composites as High-Stable Anode Materials for Lithium-ion Batteries

*Fei Wang, Wei Li, Mengyan Hou, Chao Li, Yonggang Wang and Yongyao Xia** Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200433, China

E-mail: yyxia@fudan.edu.cn

Figure S1 FESEM image of the as-prepared CrO₃-GICs.

Figure S2. TG curves for the Cr_2O_3 -GICs obtained in oxygen flow at a heating rate of 10 $^{\circ}C/min$

Figure S3. Charge/discharge curves of Cr₂O₃-GICs after surface modification.

Figure S4. The comparison of Cr_2O_3 -GICs to the commercial graphite anode material during the second discharge/charge cycle.

Figure S5. Cyclic voltammogram curves of Cr₂O₃-GICs.

Figure S6. Cycling performance of Cr_2O_3 -GICs at 10C from 101th cycle to the 2000th cycle after the first 100 cycles at 0.2C.

Figure S7. Cycle ability of Cr₂O₃/graphite mixture (the wt. % of Cr₂O₃ 17%) between voltage limits of 0 and 3.0 V at a current of 100 mA/g at room temperature.

Figure S8. Ex situ XRD patterns of the Cr_2O_3 -GICs based composite electrode after 800 cycles.