## **Supporting Information for**

## Microwave-assisted solvothermal preparation of nitrogen and

## sulfur co-doped reduced graphene oxide and graphene quantum

## dots hybrids for highly efficient oxygen reduction

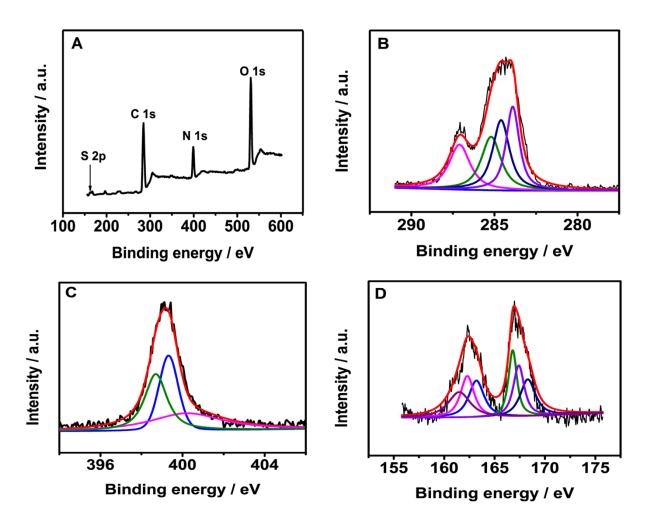
Zhimin Luo,<sup>a,#</sup> Dongliang Yang,<sup>a,#</sup> Guangqin Qi,<sup>a</sup> Jingzhi Shang,<sup>c</sup> Huanping Yang,<sup>d</sup>

Yanlong Wang,<sup>c</sup> Lihui Yuwen,<sup>a</sup> Ting Yu,<sup>\*,c</sup> Wei Huang,<sup>\*,a,b</sup> Lianhui Wang<sup>\*,a</sup>

<sup>*a*</sup>Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China. *Email:iamlhwang@njupt.edu.cn* 

<sup>b</sup>Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, PR China. *Email:iamwhuang@njupt.edu.cn* 

<sup>c</sup>Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371. *Email: yuting@ntu.edu.sg* 


<sup>d</sup>Department of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, PR China

<sup>#</sup>These authors contributed equally to this article.

\*Address correspondence to

iamlhwang@njupt.edu.cn, yuting@ntu.edu.sg, iamwhuang@njupt.edu.cn.

| Index                                                                                                               | Page |
|---------------------------------------------------------------------------------------------------------------------|------|
| Fig. S1 XPS survey for N, S-GQDs (A) and high resolution C1s (B), N1s (C), S2p (D) XPS spectra of N, S-             | 01   |
| GQDs.                                                                                                               | S1   |
| Fig. S2 ORR measurements of GCE modified with RGO (red) or RGO/N, S-GQDs (blue) in N2-saturated                     |      |
| 0.1 M KOH solution, O <sub>2</sub> -saturated 0.1 M KOH solution.                                                   | S1   |
| Fig. S3 (A) Linear sweep voltammetry curves for N, S-RGO/GQDs hybrids in N2-saturated (black) and O2-               |      |
| saturated (red) 0.1 M KOH solutions at the rotary speed of 1200 rpm. (B) Linear sweep voltammetry curves            | S2   |
| for N, S-RGO/GQDs hybrids in O <sub>2</sub> -saturated 0.1 M KOH solution. with different speeds. Scan rate is 5 mV |      |
| s <sup>-1</sup> .                                                                                                   |      |
| Fig. S4 TEM (A) and HRTEM (B) images of N, S-RGO/GQDs after 1000 cycles of CVs.                                     | S2   |
| Fig. S5 CVs of GCE modified with N, S- RGO/GQD hybrids after being annealed at 800 °C for 2 h in the                |      |
| Ar in N2-saturated 0.1 M KOH solution (black), O2-saturated 0.1 M KOH solution (red).                               | S3   |
| Fig. S6 (A) Rotating disk electrode (RDE) curves for GCE modified with N, S-RGO/GQDs hybrids after                  |      |
| being annealed at 800 °C for 2 h in the Ar in O2-saturated 0.1 M KOH solution with different rotating               | S3   |
| speeds (scan rate: 10 mV s <sup>-1</sup> ). (B) Koutecky-Levich plots derived from the RDE measurements.            |      |
| Fig. S7 XPS survey (A) and high resolution N1s (B), S2p (C), C1s (D) XPS spectra of N, S-RGO/GQDs                   |      |
| hybrids after being annealed at 800 °C for 2 h in the Ar.                                                           | S4   |
| Table S1 Comparison of ORR catalytic performances between N, S-RGO/GQDs hybrids and other doped                     | S4   |
| carbon materials in literatures.                                                                                    |      |



**Fig. S1** XPS survey for N, S-GQDs (A) and high resolution C1s (B), N1s (C), S2p (D) XPS spectra of N, S-GQDs.

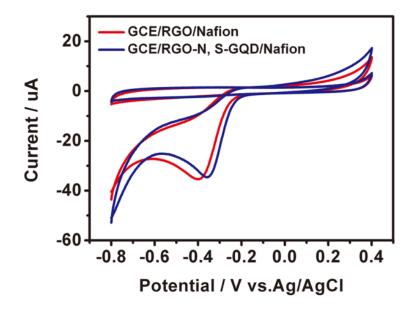




Fig. S2 ORR measurements of GCE modified with RGO (red) or RGO/N, S-GQDs (blue) in

N<sub>2</sub>-saturated 0.1 M KOH solution, O<sub>2</sub>-saturated 0.1 M KOH solution.



**Fig. S3** (A) Linear sweep voltammetry curves for N, S-RGO/GQDs hybrids in N<sub>2</sub>-saturated (black) and O<sub>2</sub>-saturated (red) 0.1 M KOH solutions at the rotary speed of 1200 rpm. (B) Linear sweep voltammetry curves for N, S-RGO/GQDs hybrids in O<sub>2</sub>-saturated 0.1 M KOH solution. with different speeds. Scan rate is 5 mV s<sup>-1</sup>.

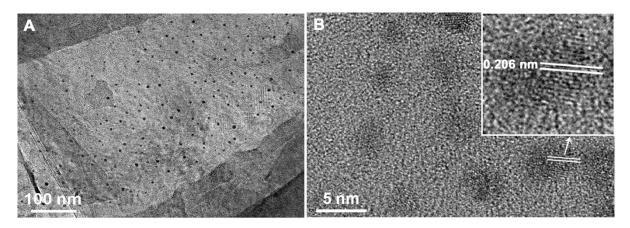
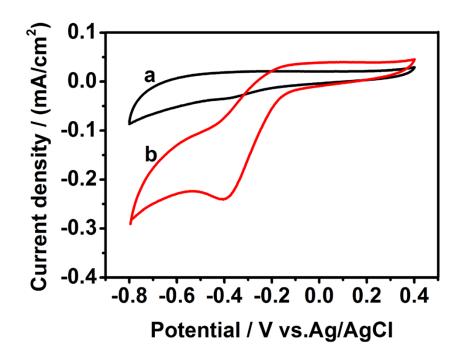




Fig. S4 TEM (A) and HRTEM (B) images of N, S-RGO/GQDs hybrids after 1000 cycles of

CVs.



**Fig. S5** CVs of GCE modified with N, S- RGO/GQD hybrids after being annealed at 800 °C for 2 h in the Ar in N<sub>2</sub>-saturated 0.1 M KOH solution (a), O<sub>2</sub>-saturated 0.1 M KOH solution (b). Scan rate is 5 mV s<sup>-1</sup>.



**Fig. S6** (A) Rotating disk electrode (RDE) curves for GCE modified with N, S-RGO/GQDs hybrids after being annealed at 800 °C for 2 h in the Ar in O<sub>2</sub>-saturated 0.1 M KOH solution with different rotating speeds at the scan rate of 5 mV s<sup>-1</sup>. (B) Koutecky–Levich plots derived from the RDE measurements.

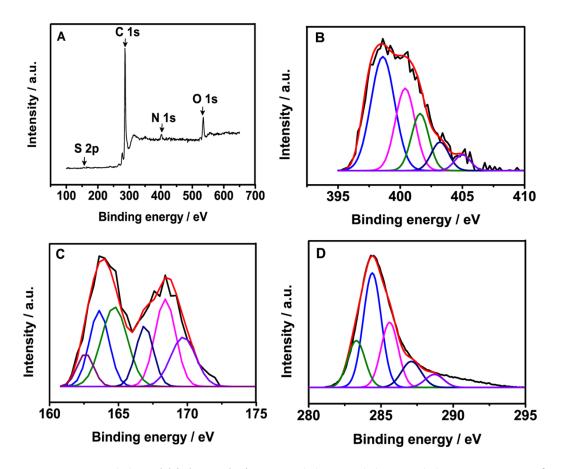



Fig. S7 XPS survey (A) and high resolution N1s (B), S2p (C), C1s (D) XPS spectra of N, S-RGO/GQDs hybrids after being annealed at 800 °C for 2 h in the Ar.

| Table S1 Comparison of ORR catalytic performances between N, S-RGO/GQDs hybrids and |
|-------------------------------------------------------------------------------------|
| other doped carbon materials in literatures.                                        |

| Catalyst          | Onset potential | Electron transfer number   | Reference    |
|-------------------|-----------------|----------------------------|--------------|
| NCM <sub>58</sub> | -0.13 V         | 3.4 (at -0.9 V)            | [1]          |
| NG                | -0.183 V        | 1.7-2.0 (at -0.4~0.7 V)    | [2]          |
| SGnP              | -0.18 V         | 3.3 (at -0.6 V)            | [3]          |
| NG                | -0.10 V         | 3.6 (at -1.0 V)            | [4]          |
| GN12              | -0.30 V         | 2.0 (at -0.4~-0.6 V)       | [5]          |
| N, S-RGO/GQDs     | -0.10 V         | 3.6-4.0 (at -0.45~-0.60 V) | This article |

[1] Y. Zhang, J. Ge1, L. Wang, D. Wang, F. Ding, X. Tao, W. Chen. Sci. Rep., 2013, 3, 1-8.

- [2] P. Chen, T. Xiao, Y. Qian, S. Li, S. Yu, Adv. Mater., 2013, 25, 3192-3196.
- [3] I. Jeon, S. Zhang, L. Zhang, H. Choi, J. Seo, Z. Xia, L. Dai, J. Baek, Adv. Mater., 2013, 25, 6138-6145.
- [4] Z. Lin, G. Waller, Y. Liu, M. Liu, C. Wong, Adv. Energy Mater. 2012, 2, 884-888.
- [5] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, J. Mater.

Chem., 2011, 21, 8038-8044.