Electronic Supplementary Information

Controllable Synthesis and In-situ TEM Study of Lithiation

Mechanism of High Performance NaV₃O₈ Cathodes

Xinyong Tao,^{*a*} Kuan Wang,^{*a*} Hongtao Wang,^{*b*} Qianqian Li,^{*b*} Yang Xia,^{*a*} Hui Huang,^{*a*} Yongping Gan,^{*a*} Chu Liang ^{*a*} and Wenkui Zhang^{**a*}

^aCollege of Materials Science and engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China. E-mail: msechem@zjut.edu.cn; Tel: +86-571-88320394 ^bDepartment of mechanics, Zhejiang University, Hangzhou, 310027, P. R. China.

Figure S1. XRD patterns of NaV_3O_8 products synthesized at different temperatures (350 °C, 450 °C, and 550 °C) for 12 h, which are designated as samples N350, N450 and N550, respectively.

Figure S2. SEM images of NaV_3O_8 products synthesized by (a) NaCl, (b) NaOH, (c) NaNO₃ and (d) Na₂SO₄, the calcination condition is same as the synthesis of the N450 sample.

Figure S3. SEM image (a) and XRD pattern (b) of NaV_6O_{15} nanorods calcined at 450 °C; SEM image (c) and XRD pattern (d) of $Na_{1.25}V_3O_8$ nanorods calcined at 450 °C.

Figure S4. Cyclic voltammetry (CV) curves of NaV_6O_{15} calcined at 450 °C at a scan rate of 0.1 mV s⁻¹ from 1.5 to 4.0 V.

Figure S5. The HRTEM images of microstructure evolution during lithiation of the NaV_3O_8 nanorod.

Figure S6. TG-DTA curves of the formation process of NaV₃O₈ products.

(Thermogravimetric/Differential Thermal Analyzer analysis was performed using a TG-DTA instrument: Diamond TG/DTA, PerkinEImer, under an air flow of 100 ml min⁻¹ with a heating rate of 10 k min⁻¹ from room temperature to 600 °C.).