Electronic Supplementary Information

Glucose-assisted synthesis of the hierarchical TiO₂ nanowires @ MoS₂ nanosheets nanocomposite and its synergistic lithium storage performance

Xiaodan Li,^{‡a,b} Wei Li,^{‡b} Meicheng Li,^{*a,c} Peng Cui,^a Dehong Chen,^d Thomas Gengenbach,^b Lihua Chu, ^a Huiyuan Liu,^e and Guangsheng Song^b

^a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206, China.

E-mail: mcli@ncepu.edu.cn; Fax: +86 10 6177 2951; Tel: +86 10 6177 2951

^b Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing Flagship, Clayton South, Victoria 3169, Australian.

^c Suzhou Institute, North China Electric Power University, Suzhou 215123, China.

^d PFPC, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia.

^e Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australian.

‡ These two authors contributed equally to this work.

Figure S1 SEM images of (a) bare TiO_2 nanowires and (b) bare MoS_2 particles assembled by nanosheets.

Figure S2 SEM image (a) and EDX spectrum (b) of the annealed TiO₂@MoS₂ nanocomposite.

Figure S3 XPS spectra of the TiO_2 nanowires, the hydrothermal and annealed $TiO_2@MoS_2$ nanocomposites: (a) the full spectrum scans, (b) Ti 2p peaks and (c) C 1s peaks.

Figure S4 Cycle performances and Coulombic efficiencies of (a) the annealed $TiO_2@MoS_2$ nanocomposite, (c) the hydrothermal $TiO_2@MoS_2$ nanocomposite, (e) pure MoS_2 nanosheets and (g) bare TiO_2 nanowires; rate performances of (b) the annealed $TiO_2@MoS_2$ nanocomposite, (d) the hydrothermal $TiO_2@MoS_2$ nanocomposite 2, (f) pure MoS_2 nanosheets and (h) bare TiO_2 nanowires.

Figure S5 Electrochemical impedance spectra (100 kHz – 100 mHz) of $TiO_2@MoS_2$ nanocomposites, bare TiO_2 nanowires and MoS_2 nanosheets: (a) before cycling and (b) after 100 cycles at the delithiation state. Two insets are the corresponding magnified high frequency region of (a) and (b), respectively.

Electrochemical impedance spectra (EIS) are shown in Figure S5 in the form of Nyquist plots. Before cycling, $TiO_2@MoS_2$ shows a smaller semicircle diameter than bare TiO_2 and MoS_2 , indicating the nanocomposite has lower charge transfer resistance (R_{ct}). After 100 cycles, the semicircle diameter for each sample significantly increases, due to the formation of SEI layers. However, $TiO_2@MoS_2$ still displays lower R_{ct} compared to either TiO_2 or MoS_2 , demonstrating the enhanced kinetic performance,

cycling stability and improved conductivity and Coulombic efficiency of the nanocomposite. Furthermore, the plot (See inset of Figure S6a) of bare MoS_2 is shifted along the real axis by ~10 Ohm initially, which is substantially larger than that of $TiO_2@MoS_2$ and bare TiO_2 . This value is the sum of all electrical resistances within the electrodes, including ionic diffusion through the electrolyte to electrode.^{1, 2} Therefore $TiO_2@MoS_2$ shows enhanced total electrical conductivity in contrast with either single component initially. Even after 100 cycles, the plot of $TiO_2@MoS_2$ (Inset of Figure S6b) shows the smallest shift along the real axis, further highlighting the synergistic effects in the nanocomposite. The ESI results demonstrate that the hybrid nanocomposite structure can effectively mitigate the SEI formation and thus improve the conductivity and Coulombic efficiency, highlighting the synergistic effect.

Figure S6 SEM images of the annealed TiO₂@MoS₂ nanocomposite after 100 cycles.

SEM images (Figure S6) of $TiO_2@MoS_2$ after 100 cycles of charge-discharge demonstrate that $TiO_2@MoS_2$ nanocomposite almost retains its original 1D hierarchical nanostructure. This retentivity benefits the improved electrochemical properties.

References

1. E. Memarzadeh Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen and D. Mitlin, *Phys. Chem. Chem. Phys.*, 2013, **15**, 13646.

2. E. L. Memarzadeh, W. P. Kalisvaart, A. Kohandehghan, B. Zahiri, C. M. B. Holt and D. Mitlin, J. Mater. Chem., 2012, 22, 6655