Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Palladium Catalyst Coordinated in Knitting N-Heterocyclic Carbenes Porous Polymers for Efficient Suzuki-Miyaura Coupling Reactions

[†] School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Figure S1. TG for the precursors (Poly-NHC).

FigureS2. SEM images for Poly-NHC-1 and Poly-NHC-1-Pd²⁺

Figure S3. SEM images for Poly-NHC-2 and Poly-NHC-2-Pd²⁺

Figure S4. SEM images for Poly-NHC-3 and Poly-NHC-3-Pd²⁺

Figure S5. TEM images for Poly-NHC-1 and Poly-NHC-1-Pd²⁺

Figure S6. TEM images for Poly-NHC-2 and Poly-NHC-2-Pd²⁺

Figure S7. TEM images for Poly-NHC-3 and Poly-NHC-3-Pd²⁺

Figure S8. N_2 sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-1.

Figure S9. N_2 sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-1-Pd²⁺.

Figure S10. N₂ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-2.

Figure S11. N_2 sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-2-Pd²⁺.

Figure S12. N₂ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-3.

Figure S13. N₂ sorption isotherms at 77.3 K (a) and pore size distributions calculated using DFT methods via adsorption branch (slit pore models, differential pore volumes, Pore width) (b) of Poly-NHC-3-Pd²⁺.