New Cu_xS_y/S-doped nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium

Mykola Seredych,¹ Enrique Rodriguez-Castellon,² and Teresa J. Bandosz^{1*}

¹Department of Chemistry, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.

²Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Spain.

*Whom Correspondence should be addressed to. E-mail: <u>tbandosz@ccny.cuny.edu</u>; Tel: (212) 650-6017; Fax : (212) 650-6107

Fig. S1. Koutecky–Levich (K-L) plots for the (a) polymer-derived carbon, (b and c) copper/carbon composites at different potential values.

Nature of the ORR process on a Pt surface is complicated and not well understood. Under common ORR conditions, O_2 may be converted into different intermediates, such as oxygenated (O*), hydroxyl (OH*) and superhydroxyl (OOH*) species. That might be a reason in the different current density and number of electron transfer.^[1, 2]

Authors	Catalyst	Kinetic current density (mA cm ⁻²)	Scan rate (mV s ⁻¹)	Number of electron transfer, average
Balan ^[3]	Pt/C	4.1	5	NA
Palaniselvam ^[4]	20 wt% Pt/C (E- TEK)	5.2	5	NA
Wu ^[5]	20 wt% Pt Vulcan XC-72	~6.0	10	3.9
Zheng ^[6]	Pt/C	~4.0	5	3.8
Zhang ^[7]	20 wt% Pt/carbon black	4.0	10	NA
Lee ^[8]	20 wt% Pt Vulcan XC-72	4.5	10	~3.7
An ^[9]	20 wt% Pt/C	~5.2	10	4.0
Jiang ^[10]	20 wt% Pt/C	4.6	10	~3.7
Zhang ^[11]	20 wt% Pt/C	~5.0	10	NA
Liang ^[12]	20 wt% Pt Vulcan XC-72	~10.5	100	4.0
Our work	20 wt% Pt Vulcan XC-72	4.7	5	3.6

Table S1. Summary of performance of commercial Pt/C catalyst in 0.1 M KOH at 1600 rpm:

NA- not available

Fig. S2. a) Thermal Gravimetry (TG) curves; b) Differential Thermal Gravimetry (DTG) curves and c) Differential Thermal Analysis (DTA) curves in air for the materials studied.

Fig. S3. C 1*s*, O 1*s*, S 2*p* and Cu $2p_{3/2}$ core level peaks of XPS spectra for the carbon/graphene/copper composites.

Fig. S4. (a) Cyclic voltammograms; (b) Linear sweep voltammograms on modified glassy carbon RDE in air-saturated 0.1 M KOH at scan rate of 5 mV s⁻¹ for the physical mixture of polymer-derived carbon (CPS) with a 2 wt. % of CuS; (c) number of electron transfer versus potential and (d) comparison of the kinetic current density.

References

- 1. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B* 2004, **108**, 17886-17892.
- S. Guo, S. Zhang and S. Sun, Angew. Chem., 2013, 125, 8686-8705; Angew. Chem. Int. Ed.,
 2013, 52, 8526-8544.
- 3. B. K. Balan, A. P. Manissery, H. D. Chaudhari, U. K. Kharul and S. Kurungot, *J. Mater. Chem.*, 2012, **22**, 23668-23679.
- 4. T. Palaniselvam, H. B. Aiyappa and S. Kurungot, J. Mater. Chem., 2012, 22, 23799-23805.
- 5. J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser and R. Yang, *J. Mater. Chem. A*, 2013, **1**, 9889-9896.
- 6. Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G.Q.M. Lu and S. Z. Qiao, *J. Am. Chem. Soc.*, 2011, **133**, 20116-20119.
- 7. C. Zhang, R. Hao, H. Lian and Y. Hou, Nano Energy, 2013, 2, 88-97.
- 8. J.-S. Lee, K. Jo, T. Lee, T. Yun, J. Cho and B.-S. Kim, *J. Mater. Chem. A*, 2013, 1, 9603-9607.
- 9. L. An, W. Huang, N. Zhang, X. Chen and D. Xia, J. Mater. Chem. A, 2014, 2, 62-65.
- 10. S. Jiang, C. Zhu and S. Dong, J. Mater. Chem. A, 2013, 1, 3593-3599.
- 11. Y. Zhang, M. Chu, L. Yang, W. Deng, Y. Tan, M. Ma and Q. Xie, *Chem. Commun.*, 2014, 50, 6382-6385.
- 12. J. Liang, Y. Jiao, M. Jaroniec and S.Z. Qiao, *Angew. Chem.*, 2012, **124**, 11664-11668; *Angew. Chem. Int. Ed.*, 2012, **51**, 1-6.