Electronic Supplementary Information

Environment-benign synthesis of branched Bi₂O₃-Bi₂S₃ photocatalysts by an etching and re-growth method

Lang Chen, Jie He, Qing Yuan, Ying Liu, Chak-Tong Au, and Shuang-Feng Yin*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of

Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan,

People's Republic of China

Corresponding author: Shuang-Feng Yin

Phone (Fax): 86-731-88821171

E-mail address: sf_yin@hnu.edu.cn

Details for preparation, characterization and evaluation of the photocatalysts:

All reagents were commercially available and of analytical grade. They were used without further purification.

Preparation of Bi₂O₃: Typically, 10 mmol of Bi(NO₃)₃·5H₂O was dissolved in 10 mL of nitric acid (1 mol/L). Then 47 mL of KOH (1 mol/L) was added to the above solution for pH adjustment, and there was the immediate formation of a white precipitant. Afterwards, the emulsion was transferred into a 100 mL Teflon-lined autoclave and maintained at 160 °C for different durations (i.e. 1, 3 or 6 h). After the autoclave was cooled down to room temperature, Bi₂O₃ (hereinafter denoted as BO) in bright yellow was collected by filtration, and washed (deionized water and absolute ethanol) and dried at 80 °C for 4 h in air.

Preparation of Bi₂O₃-**Bi**₂S₃ **composites:** In this process, BO that acted both as substrate and bismuth source was hydrothermally treated with sulfide sources. Typically, 0.932 g (2 mmol) of the as-synthesized BO was dispersed in 100 mL sulfide-containing solutions (sodium sulfide, thiourea or potassium thiocyanate, denoted herein as SS, TU or PT, respectively). Then the mixture was hydrothermally treated at 160 °C for 6 h. The resulted Bi₂O₃-Bi₂S₃ composites (denoted as BO-BS) were collected by filtration, washed and dried as in the case of Bi₂O₃ preparation.

Characterization: The as-prepared BO and BO-BS samples in the form of crystals were collected and characterized by powder X-ray diffraction (XRD) on a Bruker Automatic Diffractometer (Bruker D8 Advance) with monochromatized CuK α radiation (λ =0.15406 nm) at a setting of 40 kV and 80 mA. The scanning rate was 0.02° (2 θ)/s and the scanning range was 10-70°. The FT-IR spectra were collected on a Perkin-Elmer IR spectrophotometer using the KBr pellet technique. The surface composition and chemical states of as-synthesized samples were measured by X-ray photoelectron spectroscopy (XPS). The amount of Bi, S and O were analyzed using an X-ray Fluorescence Spectrometer (AXIOS Advanced). Field emission scanning electron microscope (FE-SEM) (Hitachi S-4800) was employed to observe the micro- and nano-structure as well as the morphology of as-prepared samples. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were taken over a JEM-3010F transmission electron microscope. UV-vis diffuse absorption spectra (UV-vis DRS) of samples were obtained over a UV-vis spectrophotometer (Cary 100) using BaSO₄ as reference. Photoluminescence spectra (PL) of the samples were obtained using a Varian Cary Eclipse Fluorescence spectrophotometer (at 425 nm excitation). Transient photocurrent responses for the as-prepared samples under the irradiation of visible light (500 W Xe lamp with a cutoff filter) were recorded over an electrochemical analyzer (CHI660D Instruments) in a standard threeelectrode system using the prepared samples as working electrode (ITO as supporter), Pt wire as counter electrode, and saturated calomel electrode (SCE) as reference.

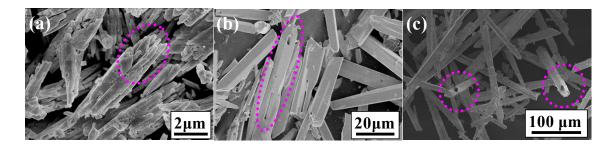


Figure S1. SEM images of Bi_2O_3 after hydrothermal treatment: (a) 1 h, (b) 3 h, and (c) 6 h at 160

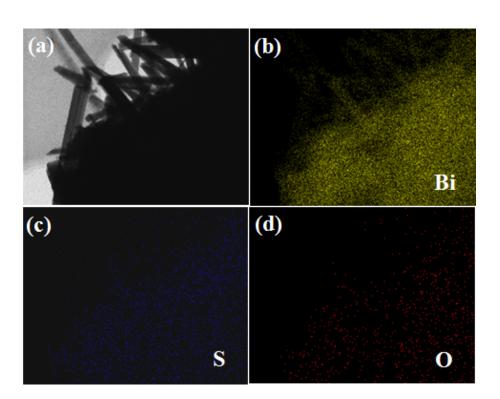


Figure S2. STEM images of (a) the Bi₂O₃-Bi₂S₃ composite, and the corresponding (b) Bi, (c) S, and (d) O elemental mappings.

°C.

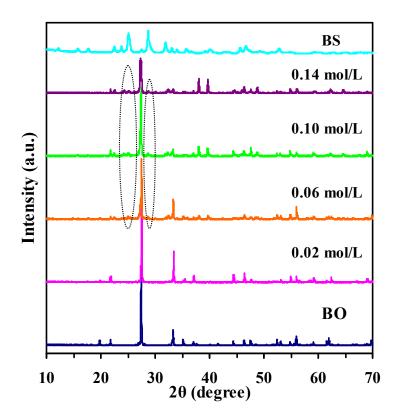
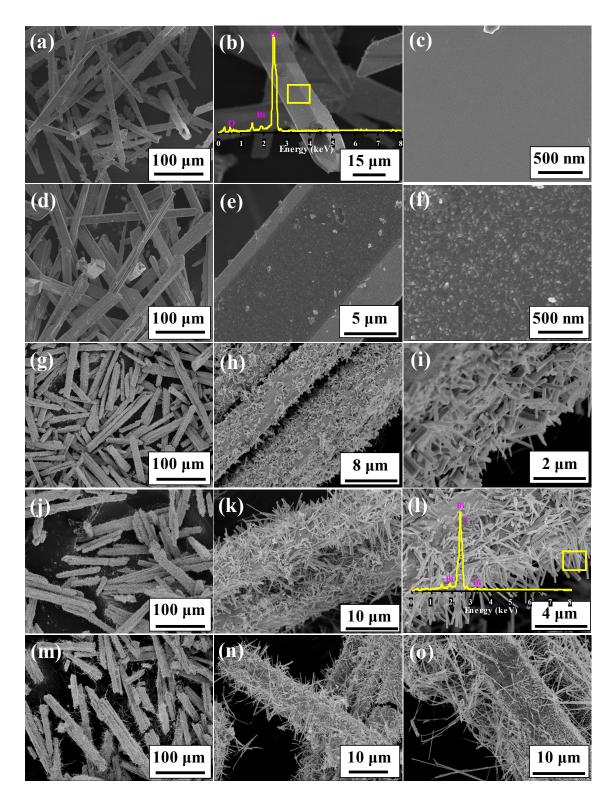



Figure S3. XRD patterns of BO (Bi₂O₃), BS (Bi₂S₃) and BO-BS (Bi₂O₃-Bi₂S₃) composites

prepared using SS (sodium sulfide) sources of different concentrations.

Figure S4. SEM images: Bi₂O₃, (a)-(c); Bi₂O₃-Bi₂S₃ composites crystallized at different SS (sodium sulfide) concentrations for 6 h: (d)-(f) 0.02 mol/L; (g)-(i) 0.06 mol/L; (j)-(l) 0.10 mol/L and (m)-(o) 0.14 mol/L.

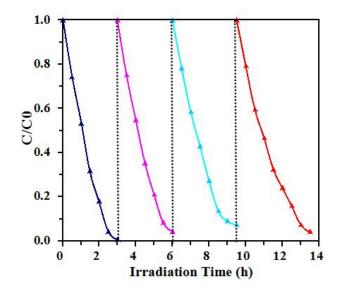


Figure S5. Recycling behavior of the Bi_2O_3 - Bi_2S_3 composite (using thiourea as sulfur sources).