A new microporous anion metal-organic framework as a platform for highly selective adsorption and separation of organic dyes

Yuan-Chun He,<sup>a</sup> Jin Yang,<sup>\*a</sup> Wei-Qiu Kan,<sup>b</sup> Hong-Mei Zhang,<sup>a</sup> Ying-Ying Liu<sup>a</sup> and Jian-Fang Ma<sup>\*a</sup>

 <sup>a</sup> Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
 <sup>b</sup> School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China

\* Correspondence authors
E-mail: yangj808@nenu.edu.cn (J. Yang)
E-mail: majf247@yahoo.com (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)



**Fig. S1** View of the  $Mn_3(\mu_3$ -OH) cluster.



Fig. S2 Coordination mode of  $H_{12}L$ .



Fig. S3 Chemical structures of dyes used in this study.



Fig. S4 Temporal evolution of UV-vis absorption spectra for SD<sup>0</sup>.



Fig. S5 Temporal evolution of UV-vis absorption spectra for SO<sup>0</sup>.



Fig. S6 Temporal evolution of UV-vis absorption spectra for AO-.



Fig. S7 Temporal evolution of UV-vis absorption spectra for MO<sup>-</sup>.



Fig. S8 Temporal evolution of UV-vis absorption spectra for R6G<sup>+</sup>.



Fig. S9 Temporal evolution of UV-vis absorption spectra for BRB<sup>+</sup>.



Fig. S10 PXRD patterns of 1 (black, simulated; red, as-synthesized; green, MB<sup>+</sup>@1; blue, MB<sup>+</sup>@1 after MB<sup>+</sup> release).



**Fig. S11** TGA curve of **1**. The weight loss from room temperature to 198 °C is assigned to the removal of DEF molecules (obsd 17.7%, calcd 17.9%).



Fig. S12  $N_2$  adsorption isotherms at 77 K of the activated samples 1. The activated samples were prepared by soaking the as-synthesized 1 in CH<sub>3</sub>OH and then evacuation at 100 °C under vacuum. However, the  $N_2$  uptake is very small. It is possible that the framework of 1 is collapsed after evacuation under vacuum.

|                      | 1                            |
|----------------------|------------------------------|
| Formula              | $C_{88}H_{112}Mn_6N_6O_{42}$ |
| Mr                   | 2255.48                      |
| Space group          | <i>P</i> -3 <i>m</i> 1       |
| a/Å                  | 28.1050(14)                  |
| b/Å                  | 28.1050(14)                  |
| $c/\text{\AA}$       | 14.5980(9)                   |
| $V/Å^3$              | 9986.0(9)                    |
| Ζ                    | 3                            |
| $D_c(g/cm^3)$        | 1.125                        |
| GOF on $F^2$         | 1.123                        |
| <i>R</i> 1 [I>2σ(I)] | 0.0942                       |

 Table S1 Crystal data and structure refinements for compound 1.

| wR2 (all data)   | 0.2475 |
|------------------|--------|
| R <sub>int</sub> | 0.1248 |

Table S2 Selected bond distances (Å) and angles (°) for 1.

| Mn(1)-O(4) <sup>#1</sup>                     | 2.136(4)  | Mn(1)-O(9)                                   | 2.131(5)  |
|----------------------------------------------|-----------|----------------------------------------------|-----------|
| Mn(1)-O(1)                                   | 2.140(4)  | Mn(1)-O(1W)                                  | 2.183(7)  |
| Mn(2)-O(2)                                   | 2.125(4)  | Mn(2)-O(9)                                   | 2.127(5)  |
| Mn(2)-O(2W)                                  | 2.188(7)  | Mn(2)-O(8) <sup>#1</sup>                     | 2.229(5)  |
| Mn(3)-O(3W)                                  | 2.120(14) | Mn(3)-O(9)                                   | 2.094(5)  |
| Mn(3)-O(7) <sup>#1</sup>                     | 2.190(9)  | Mn(3)-O(3) <sup>#1</sup>                     | 2.170(6)  |
| O(4) <sup>#1</sup> -Mn(1)-O(4) <sup>#2</sup> | 95.6(2)   | O(4) <sup>#1</sup> -Mn(1)-O(9)               | 91.93(15) |
| O(4) <sup>#1</sup> -Mn(1)-O(1) <sup>#3</sup> | 86.08(17) | O(9)-Mn(1)-O(1) <sup>#3</sup>                | 90.14(16) |
| O(1) <sup>#3</sup> -Mn(1)-O(1)               | 92.1(3)   | O(4) <sup>#1</sup> -Mn(1)-O(1W)              | 90.75(19) |
| O(9)-Mn(1)-O(1W)                             | 176.0(2)  | O(1)-Mn(1)-O(1W)                             | 87.10(19) |
| O(2)-Mn(2)-O(2) <sup>#3</sup>                | 95.2(3)   | O(2)-Mn(2)-O(9)                              | 91.03(15) |
| O(2)-Mn(2)-O(2W)                             | 88.6(2)   | O(9)-Mn(2)-O(2W)                             | 179.4(3)  |
| O(2)-Mn(2)-O(8) <sup>#2</sup>                | 90.15(19) | O(9)-Mn(2)-O(8) <sup>#2</sup>                | 92.53(16) |
| O(2W)-Mn(2)-O(8) <sup>#2</sup>               | 87.9(2)   | O(8) <sup>#2</sup> -Mn(2)-O(8) <sup>#1</sup> | 84.3(3)   |
| O(3W)-Mn(3)-O(9)                             | 168.1(5)  | O(3W)-Mn(3)-O(7) <sup>#1</sup>               | 101.8(4)  |
| O(9)-Mn(3)-O(7) <sup>#1</sup>                | 71.3(3)   | O(7) <sup>#1</sup> -Mn(3)-O(7) <sup>#2</sup> | 102.9(5)  |
| O(3W)-Mn(3)-O(3) <sup>#1</sup>               | 91.0(4)   | O(7) <sup>#1</sup> -Mn(3)-O(3) <sup>#1</sup> | 89.3(3)   |
| O(9)-Mn(3)-O(3) <sup>#2</sup>                | 98.42(19) | O(3) <sup>#1</sup> -Mn(3)-O(3) <sup>#2</sup> | 74.9(3)   |

Symmetry transformations used to generate equivalent atoms:  $^{\#1}$  –*x*+*y*, *y*, -*z*+2;  $^{\#2}$  *x*, *y*, -*z*+2;  $^{\#3}$  *x*, *x*-*y*, *z*.