Electronic Supplementary Information

A Bottom-Up Synthesis of α -Fe₂O₃ Nanoaggregates and their Composite with Graphene as Highly Performing Anode in Lithium-Ion Battery

Xueying Li,^a Yuanyuan Ma,^{ab} Lei Qin,^a Zhiyun Zhang,^a Zhong Zhang,^a Yanzhen Zheng,^a and Yongquan Qu*^{ab}

^a Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China, 710049

^b State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China

*E-mail: yongquan@mail.xjtu.edu.cn

XRD simulation:

The simulated powder X-ray diffraction plot was obtained from the single crystal data using Mercury software. Single-crystal X-ray diffraction data of compound polymeric iron(III) acetate was recorded on a Bruker Apex CCD II area-detector diffractometer with graphite-monochromated MoK radiation(λ =0.71073 Å) at 100 K. The more information could be found in the previous paper (*Angew. Chem. Int. Ed.*, 2007, **46**, 6076-6080).

Fig. S1 TEM images of iron oxide which treated by hydrothermal at 200 °C for 24h with the equivalent amounts of $FeCl_3 \cdot 6H_2O$ and NaAc.

Fig. S2 (a) N_2 adsorption-desorption isotherms and pore-size distribution curves of α -Fe₂O₃ nanoaggregates; (b) N_2 adsorption-desorption isotherms and pore-size distribution curves of α -Fe₂O₃@rGO nanoaggregates;

Fig. S3 Cycling performance of α -Fe₂O₃@rGO and reduced graphene oxide (rGO) electrodes at a current density of 100 mA g⁻¹. Blue triangles represent the α -Fe₂O₃@rGO electrode. Black circles represent the rGO electrode.