Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Highly Reversible Switching from P- to N-type NO₂ Sensing in Monolayer Fe₂O₃ Inverse Opal and Associated P-N Transition Phase Diagram

Zhengfei Dai,^a Chul-Soon Lee,^a Yahui Tian,^a Il-Doo Kim,^b and Jong-Heun Lee^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Seoul 136-713, Republic

of Korea;

^bDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and

Technology, Daejeon, 305-701, Republic of Korea

* To whom correspondence should be addressed. E-mail: jongheun@korea.ac.kr

Figure S1. Zhengfei Dai et al.

Figure S1. Schematic illustration of the fabrication strategy for honeycomb-like Fe_2O_3 ordered porous thin films. (a) A flat glass slide covered with a colloidal monolayer of PS spheres is slowly dipped into a mixed precursor solution containing Fe^{3+} . (b) The colloidal monolayer floats on the surface of the solution. (c) The floating monolayer is extracted and directly attached to the sensing substrate. (d) The substrate covered with the monolayer is laid out flat and dried. (e) The dried sample is annealed at high-temperature to remove the PS spheres, leading to (f) the final honeycomb-like ordered macroporous thin film.

Figure S2. Zhengfei Dai et al.

Figure S2. Photographs of (a) a self-assembled monolayer of PS spheres (500 nm in diameter) on a glass slide and (b) a template-directed ordered porous Fe_2O_3 thin film on a silicon substrate.

Figure S3. Zhengfei Dai et al.

Figure S3. (a) Cross-sectional SEM image and (b) EDX pattern obtained from the ordered porous Fe_2O_3 thin films.

Figure S4. Zhengfei Dai *et al.*

Figure S4. (a–c) TEM images at different levels of magnification of the channel between two adjoining 3-fold rotocenters in the Fe_2O_3 pores. The yellow arrows in (c) indicate different crystal domains.

Figure S5. (a) SEM image, (b) XRD pattern, (c) TEM image and (inset) SAED pattern, and (d) O1s core level XPS spectrum of template-directed ordered porous SnO_2 thin films on a silicon substrate. The two peaks in (d), at 530.7 eV and 532.1 eV, are ascribed to Sn-O in SnO₂ and to surface adsorbed O groups, respectively.

Figure S6. Zhengfei Dai et al.

Figure S6. Sensing responses to 0.25–5 ppm NO₂ of the porous Fe_2O_3 sensor at (a) 200 °C, (b) 250 °C, (c) 400 °C and (d) 450 °C.

Figure S7. Sensing responses to 10–200 ppb NO₂ of the porous Fe_2O_3 sensor at (a) 200 °C and (b) 250 °C.

Figure S8. Zhengfei Dai et al.

Figure S8. Sensing responses to 0.05–50 ppm NO₂ of a porous SnO₂ sensor at (a) 300 °C and (b) 200–450 °C.

Figure S9. The stability of the sensing response of the Fe₂O₃ device at 450 °C over 4 weeks.

Figure S10. Zhengfei Dai et al.

Figure S10. Schematic illustration of the well-known Lennard-Jones potential.