Experimental Section

Anhydrous TiCl₄, toluene and glacial acetic acid were acquired from Sigma Aldrich chemical company. All analytical and spectroscopic samples were prepared inside a Saffron Scientific (type β) glovebox, equipped with a closed loop recirculation system for the removal of moisture and oxygen (operating at ca. 2.1-2.5 vppm O₂).

IR spectra were recorded using a Nicolet 6700 spectrometer (Thermo Fisher Nicolet, USA) with KBr pellets. Powder X-ray diffraction (XRD) experiments were performed using a X'Pert Pro diffractometer with Cu-K α radiation (λ = 1.5418Å) operating at 40 kV and 40 mA and the scanning angle ranged from 10° to 90° of 20. Both carbon and hydrogen analyses were done using a varioMicro Elemental analyzer (Elementar Analysensysteme GmbH, Germany). Scanning electron microscopy (SEM) images were collected using a field emission scanning electron microscope (Hitachi S-4800). Transmission electron microscopy (TEM) was performed with a FEI Tecnai G2 F30 electron microscope operating at an accelerating voltage of 300 kV. The surface composition of sample B were determined by energy dispersive spectroscopy (EDS). EDS data of sample B was collected using an Thermo SCIENTIFIC energy dispersive X-ray spectroscopy system attached to a Hitachi S-4800 SEM, with an acceleration voltage of 15keV. X-ray photoelectron spectra (XPS) was operated on a photoelectron spectrometer (Kratos AXIS Ultra DLD, Shimadzu, Japan).

Synthesis and Characterisation of 1

A mixture of 10.0ml TiCl₄ (91.0 mmol), 20.0ml dry toluene and 20ml glacial acetic acid was stirred under nitrogen at 35 °C for 30 minutes. Cooling at 1°C per hour to room temperature (20 °C) gave colorless crystals of 1(8.73g, 39% based on TiCl₄). Anal. Calc. (%) for $C_8H_{14}Cl_4O_9Ti_2$: C, 19.54; H, 2.87. Found (%): C, 19.52; H, 2.80. IR data (KBr, cm⁻¹) for 1: 3270s, 2930w, 1636m, 1587m, 1503s, 1489s, 1313w, 1275m, 1147s, 1112s, 1089s, 941w, 825w, 754m, 698m, 626m, 525m.

Fig. S1 Crystals image of cage 1

Preparation of A and B

1.4g dried crystals of cage 1 was performed at 500 °C for 5 hour in an air flow, a light yellow solid of A was obtained.

1.5g dried crystals of cage 1 was performed at 500 °C for 5 hour in a purified nitrogen flow, a black solid of **B** was obtained.

Elemental Analysis of **A** and **B**: **A**, C 0.16%, H 0.52%: **B**, C 16.69%, H 0.98%

These results can be compared to EDS measurements, which give similar C content, presumably because they overestimate the C content at which is at the surface of the samples.

Fig. S2 Images of A

Fig. S3 Images of B

Preparation of electrodes

Electrode A was prepared by coating a mixture containing 90% powder of A, 10% PVDF binder on an Indium-Tin-Oxide glass (Fig 7a) or a Nickel foil (Fig 7b), followed by drying at 60 °C for 24 hour.

Electrode **B** was prepared by coating a mixture containing 90% powder of **B**, 10% PVDF binder on Indium-Tin-Oxide glass (Fig 7a) or a Nickel foil (Fig 7b), followed by drying at 60 °C for 24 hour.

Fig. S4 Colors of Electrode A at different potentials

Calculation of specific capacitance of \boldsymbol{B}

The specific capacitance of **B** is calculated according to the following equation:¹⁻²

$$C_{\rm B} = \frac{Q_{\rm B}}{\Delta V \times m_{\rm B}}$$

Where C (F/g) is the specific capacitance, Q (C) is the average charge during the charging and discharging process, ΔV (V) is the potential window, and m (g) is the mass of **B**.

 J. Yan, E. Khoo, A. Sumboja, P. S. Lee, ACS Nano, 2010, 4, 4247.
 J. Yan, Z. J. Fan, T. Wei, J. Cheng, B. Shao, K.Wang, L. P. Song, M. L. Zhang, J. Power Sources 2009, 194, 1202–1207.

Single Crystal X-ray Crystallography

Crystals data were collected on a Bruker Smart Apex CCD diffractometer. The structures were solved by Direct Methods and refined by full-matrix least squares on F^2 . (SHELX, Sheldrick, G. M. *Acta Crystallogr.* **2008**, *A64*, 112).

Table S1 Details of the structure solutions and refinements of 1.

Compound	1
Chemical formula	$C_8H_{14}Cl_4O_9Ti_2$
FW	491.79
Crystal system	Orthorhombic
Space group	Pnma
Unit cell dimensions	
a (Å)	12.6154(9)
<i>b</i> (Å)	18.5017(14)
<i>c</i> (Å)	7.6960(5)
$V(Å^3)$	1796.3(2)
Ζ	4
$ ho_{calc}$ (Mg/m ³)	1.818
μ (Mo-K α) (mm ⁻¹)	1.520
reflections collected	17798
independent reflections (R_{int})	1907
(rtint)	(0.0423)
$R1, wR2 [I > 2\sigma(I)]$	0.0435,
$[1, w_{L2}[1 > 20(1)]]$	0.1096
	0.0402
R1, wR2 (all data)	0.0492, 0.1132
L	1

Fig. S5 View down the c axis of the crystal packing diagram of 1

Fig. S6 The powder XRD results of A and B.

EDS Analysis of A and B

Element C	Atomic Percentage 7.53 %	Weight Percentage 3.48 %	
0	60.24 %	37.11%	
Cl	0.07 %	0.10 %	
Ti	32.16 %	59.31 %	

Fig. S8 EDS on sample B.

Table S3 EDS on sample B.

Element C	Atomic Percentage 26.81 %	Weight Percentage 14.64 %	
0	51.01 %	37.11 %	
Cl	0.12 %	0.19 %	
Ti	22.06 %	48.05 %	

XPS Analysis of A and B

Fig. S9 XPS signal of A for Ti 2p region.

Fig. S10 XPS signal of A for Cl 2p region.

Fig. S11 XPS survey spectra of A

Fig. S13 XPS signal of B for Cl 2p region.

