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S1. Raman spectra of products with/without LiOH catalyst.
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Figure S1. Raman spectra of products obtained from ball-milling of graphite and Cgo with LiOH catalyst
(graphene-Cgp hybrid, curve a) and without LiOH catalyst (curve b).

Clearly, the characteristic Raman peak at 1458 cm™ assigned to Cgo in the Raman spectrum of
the graphene-Cgo hybrid is not observed in the Raman spectrum of the product obtained from
ball-milling of graphite and Cgo without LiOH catalyst, revealing that graphene-Cgo hybrid did

not form in this case.

S2. O1s XPS spectrum of the graphene-Cgp hybrid.
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Figure S2. O1s XPS spectrum of the graphene-Cgo hybrid.
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S3. TGA curve of the graphene-Cgo hybrid in comparison with those of pristine graphite
and Ceo.
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Figure S3. TGA curves of pristine graphite (a), the graphene-Cgo hybrid (b), and Csg (c). A dotted vertical
line was added to aid identifying the last step (700 - 770 °C) related to the decomposition of Cey.

S4. Schematic illustration of the formation mechanism of the graphene-Cgo hybrid via

ball-milling.
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Scheme S1. Schematic illustration of the formation mechanism of the graphene-Cg, hybrid via the
mechanochemical ball-milling.
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S5. Raman spectra of the products obtained with different catalysts.
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Figure S4. Raman spectra of the products obtained from ball-milling graphite and Cg with different

catalysts of LiOH (a), KOH (b) or NaOH (c).

S6. HR-TEM images of the graphene-Cgo hybrid taken at another site and the “blank”

graphene nanoplatelets.

Figure S5. HR-TEM images of the graphene-Cgo hybrid taken at another site different to that shown in
Figure 5 (a) and the “blank” graphene nanoplatelets prepared by ball-milling pure graphite under identical

conditions (b).
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