Electronic Supplemental Information for

Directly bonded hybrid of graphene nanoplatelets and fullerene: facile solid-state mechanochemical synthesis and application as carbon-based electrocatalyst for oxygen reduction reaction

Jian Guan, Xiang Chen, Tao Wei, Fupin Liu, Song Wang, Qing Yang, Yalin Lu, and Shangfeng Yang*

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC), Hefei 230026, China

Contents

S1.	Raman spectra of products with/without LiOH catalyst.	[S2]
S2.	O1s XPS spectrum of the graphene-C ₆₀ hybrid.	[S2]
S3.	TGA curve of the graphene- C_{60} hybrid in comparison with those of pristine	
	graphite and C ₆₀ .	[S 3]
S4.	Schematic illustration of the formation mechanism of the graphene- C_{60} hybrid	d via
	ball-milling.	[S 3]
S5.	Raman spectra of the products obtained with different catalysts.	[S4]
S6.	-TEM images of the graphene- C_{60} hybrid taken at another site and the "blank	
	graphene nanoplatelets.	[S4]

S1. Raman spectra of products with/without LiOH catalyst.

Figure S1. Raman spectra of products obtained from ball-milling of graphite and C_{60} with LiOH catalyst (graphene- C_{60} hybrid, curve a) and without LiOH catalyst (curve b).

Clearly, the characteristic Raman peak at 1458 cm⁻¹ assigned to C_{60} in the Raman spectrum of the graphene- C_{60} hybrid is not observed in the Raman spectrum of the product obtained from ball-milling of graphite and C_{60} without LiOH catalyst, revealing that graphene- C_{60} hybrid did not form in this case.

S2. O1s XPS spectrum of the graphene- C_{60} hybrid.

Figure S2. O1s XPS spectrum of the graphene- C_{60} hybrid.

S3. TGA curve of the graphene- C_{60} hybrid in comparison with those of pristine graphite and C_{60} .

Figure S3. TGA curves of pristine graphite (a), the graphene- C_{60} hybrid (b), and C_{60} (c). A dotted vertical line was added to aid identifying the last step (700 - 770 °C) related to the decomposition of C_{60} .

S4. Schematic illustration of the formation mechanism of the graphene- C_{60} hybrid via

ball-milling.

Scheme S1. Schematic illustration of the formation mechanism of the graphene- C_{60} hybrid via the mechanochemical ball-milling.

S5. Raman spectra of the products obtained with different catalysts.

Figure S4. Raman spectra of the products obtained from ball-milling graphite and C_{60} with different catalysts of LiOH (a), KOH (b) or NaOH (c).

S6. HR-TEM images of the graphene- C_{60} hybrid taken at another site and the "blank"

Figure S5. HR-TEM images of the graphene- C_{60} hybrid taken at another site different to that shown in Figure 5 (a) and the "blank" graphene nanoplatelets prepared by ball-milling pure graphite under identical conditions (b).