Supporting Information

TiO₂ interpenetrating networks decorated with SnO₂ nanocrystals: enhanced activity of selective catalytic reduction of NO with NH₃

Minjun Chen ^{a, ⊥}, Jianping Yang ^{a, b, ⊥}, Yong Liu ^c, Wei Li ^c, Jianwei Fan ^{a, c*}, Xianqiang Ran ^a, Wei Teng ^a, Yu Sun ^d, Wei-xian Zhang ^a, Guangming Li ^{a*}, Shi Xue Dou ^b and Dongyuan Zhao ^c

^a College of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R.
China

 ^b Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia

^c Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China

^d Shanghai Tongji Clearon Environmental-Protection Equipment Engineering Co., Ltd, Shanghai 200092, P. R. China

 $^{\perp}$ These authors contributed equally to this work.

*E-mail address: <u>fanjianwei@tongji.edu.cn</u>; <u>ligm@tongji.edu.cn</u> Telephone number: +86-21-65982658

Experimental Section

Chemicals. All of chemicals were analytical grade and used without further purification. Ammonia aqueous solution (30 wt %), tetraethyl orthosilicate (TEOS), HCl aqueous solution (37 wt %), NaOH and SnCl₄ were purchased from Sinopharm Chemical Reagent Co. (China). TiCl₄ was purchased from Aladdin Industrial Inc. TiF₄ was obtained from Sigma-Aldrich Co. LLC. Deionized water was used in all experiments.

Preparation of silica colloidal opal templates. Silica colloidal opal templates were synthesized according to a modified Stöber method as described by G.H. Bogush¹ and Edward J. W. Crossland.² Typically, 6.4 mL of deionized water, 3.6 mL of ammonia aqueous solution (30 wt %) and 20 mL of TEOS were sequentially added into 150 mL of ethanol and stirred (700 rpm) for 24 h. A quasi-close-packed bead template with a translucent solid was obtained after centrifugation of the reaction solution at 7000 rpm for 5 h. The solid was sintered at 500 °C for 30 min (ramping time 4 h) for further use. **Pre-seeding of silica opals templates.** Typically, 5 g of the sintered template was immersed in 33 mL of aqueous TiCl₄ (0.015 mM to 15 mM) containing 1 mL of 37 wt % HCl and held at 70 °C for 60 min. After thorough rinsing, the dried template was resintered at 500 °C for 30 min (ramping time 4 h).

Synthesis of TiO₂ interpenetrating network architectures. TiF₄ was dissolved in deionized water (200 mM) after first adjusting the pH to 2.1 by addition of 37 wt % HCl. 650 mg of the pre-treated silica template was added to 100 mL of TiF₄ solution in a 125 ml-volume Teflon vessel. The vessel was brought to the target reaction temperature 160 °C for the period of the reaction until the solvent evaporated to dryness and then cooling in air over approximate 1 h. The product was collected as a solid white powder, settled at the base of the vessel and rinsed with H₂O by vacuum filtration on 4.5 µm paper. The silica template was selective etched in aqueous 2 M NaOH at 80 °C for 60 min in a polypropylene beaker. The remaining TiO₂ was collected by centrifugation (3000 r.p.m. for 60 min) and washed with H₂O and ethanol. Synthesis of SnO₂-decorated TiO₂ interpenetrating network architectures. 60 µL

of SnCl₄ and 1 g of as-made TiO₂ (Sn/Ti ratio was ~ 10 wt %) was added in 20 mL of ethanol and stirred until the solvent evaporated to dryness. The Sn-doped TiO₂ was sintered at 350 °C for 2h in air (ramping time 5 h).

NH₃-SCR of NO performance. The SCR performance of the catalysts was evaluated in a fixed-bed stainless steel reactor (i.d.: 10 mm) containing 0.8 g of catalyst located inside a tube furnace. The reaction conditions were as follows: 1000 ppm NO, 1000 ppm NH₃, 5 vol. % O₂, 200 ppm SO₂ (when used), 5 vol. % H₂O (when used) and N₂ as the balance gas. In all tests, the total flow rate of the feed gas was 130 mL/min, which corresponded to a space velocity of approximate 10000 h⁻¹ except for investigating the effect of GHSV, which was tested ranging from 10000 to 40000 h⁻¹. The NO conversion and N₂ selectivity were calculated as follows:

The concentration of NO and NO₂ in the inlet and outlet gases was measured using an ABB EL3020 FTIR gas analyzer. Analysis of N₂O was done online by a Polytron IR N₂O gas analyzer. The reaction system was kept for 1 h at each temperature to reach a steady state.

Specific reaction rate. The pseudo-first order rate constant k (cm³g⁻¹s⁻¹) of the SCR reaction is calculated by Eley-Rideal mechanism. It assumed that the NH₃ is strongly adsorbed on the catalyst and the NO reacted from the gas phase. The equation is expressed as follows³:

$$k = \frac{Vo}{W} In \frac{1}{1 - X_{NO}}$$

where V_0 means the total volumetric flow rate at the inlet (cm³s⁻¹), W represents the mass of catalyst (g) and X_{NO} is the ratio of NO conversion. In this work, the catalyst amount is of 0.8 g for SnO₂-decorated TiO₂ interpenetrating network architectures sample, at the temperature of 175 °C, the V_0 =9.6 cm³s⁻¹ (GHSV=40000 h⁻¹) and X_{NO} =71.2%, the *k* is calculated to be 14.9 cm³g⁻¹s⁻¹. The *k*' of the SnO₂-doped P25 is

calculated to be $2.6 \text{ cm}^3\text{g}^{-1}\text{s}^{-1}$ with the same method.

Characterization. Field-emission scanning electron microscopy (FESEM) images were taken using a field-emission Hitachi S-4800 (Japan) operated at 1.0 kV. Transmission electron microscopy (TEM) measurements were conducted on a JEM-2011 microscope (JEOL, Japan) operated at 200 kV. Samples were first dispersed in ethanol and then collected using carbon-film-covered copper grids for analysis. Mapping images were also taken by TEM to analyze the distribution of Sn and Ti. The chemical composition and valence were analyzed by an energy-dispersive X-ray spectrometer (EDX) attached to the TEM system and X-ray photoelectron spectroscopy (XPS, Axis Ultra, Kratos) with a monochromatic Al K_{α} source. The Sn/Ti ratios of catalysts were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on a P-4010 ICP instrument after microwave digestion in sulfuric acid. Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 X-ray diffractometer (Germany) with Ni-filtered Cu K_a radiation (40 kV, 40 mA). Nitrogen adsorption-desorption isotherms were measured at 77 K with a Micromerites Tristar 3020 analyzer (U.S.A.). Before measurements, the samples were degassed in a vacuum at 180 °C for 8 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas (S_{BET}) using adsorption data in a relative pressure range from 0.05 to 0.2. By using the Barrett-Joyner-Halenda (BJH) model, the pore volumes and size distributions were derived from the adsorption branches of isotherms, and the total pore volumes (Vt) were estimated from the adsorbed amount at a relative pressure p/p_0 of 0.995. Temperature-programmed desorption of NH₃ (NH₃-TPD) was carried out in a fixed-bed quartz reactor. A typical gas flow rate of 300 mL/min and a sample mass of 0.1 g was used during the experiments. The sample underwent following experimental procedures during TPD: (1) degasification at 500 °C for 1 h in a N_2 flow; (2) cooling down to 40 °C for 1 h adsorption in a NH₃ flow; (3) 1 h purging by a N₂ flow to remove physically adsorbed species; and (4) temperature-programmed desorption under N2 with a heating rate of 10 °C/min up to 700 °C.

References:

- 1 G. H. BOGUSH, M. A. TRACY and C. F. Z. IV, J. Non-Cryst Solids, 1988, 104, 95-106.
- 2 E. J. W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber and H. J. Snaith, *Nature*, 2013, 495, 215-219.
- 3 S. J. Yang, C. Z. Wang, J. H. Li, N. Q. Yan, L. Ma and H. Z. Chang, *Appl. Catal. B-Environ.*, 2011, 110, 71-80.

Table S1 Sn and Ti contents of 10 wt % SnO₂-decorated TiO₂ interpenetrating network architectures sample by ICP-AES analysis.

Sample* –	Composition (wt. %)		Sn/Ti	
	Ti	Sn	(atomic ratio)	
10 wt % SnO ₂ -	52 19	4 79	0.037	
decorated TiO ₂	52.18	4.78		

* The weight ratio of Sn/Ti is calculated to be 9.16 wt %.

Table S2. The acidic sites of 10 wt % SnO₂-decorated TiO₂ interpenetrating network architectures sample by NH₃-TPD.

Sample	Peak Number	Temperature at Maximum (°C)	Quantity (mmol/g)	
10 wt % SnO ₂ -	1	382.7	1.03	
decorated TiO ₂	2	643.6	3.82	
$10 \text{ wt } \% \text{ SnO}_2 \text{ -}$	1	342.2	0.019	
doped P25	2	526.5	0.032	

Table S3 S_{BET} values of TiO₂ interpenetrating network architectures and 10 wt % SnO₂-decorated TiO₂ pre-seeding with various TiCl₄ concentrations compared with commercial TiO₂ (P25).

TiCl ₄ concentration (mM)		15	1	0.2	0.015	P25
S _{BET}	TiO ₂	120.2	116.0	82.9	60.3	~ 50
$(m^2g^{-1})^*$	Sn-decorated TiO ₂	78.6	71.3	48.0	36.7	23.7

* Surface area calculated by BET method at relative pressure of $p/p_0 = 0.05 - 0.2$

Fig. S1 XPS survey spectrum of the 10 wt % SnO_2 -decorated TiO_2 interpenetrating network architectures samples.

Fig. S2 NH3-TPD profiles of the 10 wt % SnO2-decorated TiO2 interpenetrating network architectures catalysts (a) and SnO2-doped P25 (b) after calcination at 350 °C for 2h.

Fig. S3 SEM images of TiO_2 interpenetrating network architectures and SnO_2 -decorated TiO_2 samples over arrange of crystal seeding conditions: (A) 1 mM seeded TiO_2 , (B) 0.2 mM seeded TiO_2 , (C) 0.015 mM seeded TiO_2 , (D) 0.015 mM seeded $Sn-TiO_2$.

Fig. S4 Nitrogen adsorption-desorption isotherms of the (A) TiO_2 interpenetrating network architectures and 10 wt % SnO_2 -decorated TiO_2 interpenetrating network architectures with different concentration of $TiCl_4$ seeding (a) 15, (b) 1, (c) 0.2 and (d) 0.015 mM. The TiO_2 was synthesized for 12 h hydrothermal reaction at 160 °C.

Fig. S5 XRD patterns of SnO_2 -decorated TiO₂ interpenetrating network architectures samples preseeded with various TiCl₄ concentrations by using SiO₂ opals as a template with the hydrothermal treatment at 160 °C for 12 h and doping SnO₂ with calcination at 350 °C: (a) 15 mM, (b) 1 mM, (c) 0.2 mM, (d) 0.015 mM TiCl₄.