Electronic Supplemently Information

Multiple Heteroatoms Induced Carrier Engineering and Hierarchical Nanostructure for High Thermoelectric Performance of Polycrystalline In₄Se_{2.5}

Yubo Luo, Junyou Yang*, Ming Liu, Ye Xiao, Liangwei Fu, Weixin Li, Dan Zhang, Mingyang Zhang, Yudong Cheng

Figure S1:XRD patterns of the sintered samples (M=Pb+Cu+I) from sections parallel and perpendicular to the pressing direction.

Figure S2: The In-Se binary phase diagram

Figure S3: the EDS results for Matrix, Cu, Pb and In nanoparticles

SI4: the calculation of Lorenz number of all the samples

The Lorenz number (L) is estimated by the follow equation:

$$L = \left(\frac{k_B}{e}\right)^2 \left(\frac{(r+7/2)F_{r+5/2}(\varphi)}{(r+3/2)F_{r+1/2}(\varphi)} - \left(\frac{(r+7/2)F_{r+3/2}(\varphi)}{(r+3/2)F_{r+1/2}(\varphi)}\right)^2\right)$$

Here, $F_n(\varphi)$ is the Fermi integration: $F_n(\varphi) = \int_0^{\infty} \frac{x^n}{1 + e^{x-n}} dx$, r is the scattering parameter (typical r=-1/2 for acoustic phonon scattering near room temperature) and φ is the reduced Fermi energy $\varphi = E_F/k_B T$ and which can be derived from the measured S on the basis of single band approximation:

$$S = \pm \frac{k_B}{e} \left(\frac{(r+5/2)F_{r+3/2}(\varphi)}{(r+3/2)F_{r+1/2}(\varphi)} - \varphi \right)$$

Finally, the calculated L for In₄Se_{2.5}, Pb, Pb/I, Pb/Cu, Cu/I and Pb/Cu/I doped samples are 1.57×10^{-8} W Ω K⁻², 1.81×10^{-8} W Ω K⁻², 1.77×10^{-8} W Ω K⁻², 1.68×10^{-8} W Ω K⁻², 1.66×10^{-8} W Ω K⁻² and 1.67×10^{-8} W Ω K⁻², respectively.

Parameters	
Lattice constant	a=12.308Å
	b=15.296Å
	C=4.081Å
Volume per atom	$26.37 \times 10^{-30} \text{m}^3$
Mass per atom	1.65×10^{-22} g
Gruneisen parameter	γ=1.82
Sound velocity	2045m/s
Debye temperature	260K
Density of mass	6.02g/m^3

SI Table 1: Parameters used to calculate the lattice thermal conductivity