In situ spectroscopy studies of CO₂ adsorption in a dually

functionalized microporous metal-organic framework

Yuan Chen,¹ Han Wang,² Jing Li,² and Jenny V. Lockard¹

¹Department of Chemistry, Rutgers University-Newark,

Newark, New Jersey 07102, United States

²Department of Chemistry and Chemical Biology, Rutgers University-New Brunswick,

Piscataway, New Jersey 08854, United States

Supporting Information

1. Synthesis

Synthesis of 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H₆TDPAT):

5-aminoisophthalic acid (7.6 g, 0.042 mol), NaOH (2.68 g, 0.067 mol), and NaHCO₃ (4.37 g, 0.052mol) were mixed in 70 mL H₂O. The mixture was stirred at 0 °C, during which cyanuric chloride (1.84 g, 0.01 mol) in 1,4-dioxane (35 mL) was added dropwise. The mixture was then stirred at 100 °C for 24 hours before cooling down to room temperature. The solution was adjusted to pH =2 with HCl solution and the resulting solid was collected by filtration, rinsed several times with distilled water and then hot methanol and dried to give pure H₆TDPAT (5.0 g, yield: 90%). ¹H NMR ([D6] DMSO, 300 MHz): δ =8.12 (3H), 8.47 (6H), 9.67 (3H) ppm.

Synthesis of Cu-TDPAT (1)

 $Cu(NO_3)_2 \cdot 3H_2O$ (492 mg, 2.04 mmol), H_6TDPAT (90 mg, 0.147 mmol) were dissolved in 6 mL DMA, 6 mL DMSO, 0.3 mL H_2O and 2.7 mL HBF_4 . The mixture was sonicated until homogeneous solution was achieved and then sealed in a vial and heated at 85 °C for 5days. Upon cooling to room temperature, blue crystals were collected after filtration and washing with DMA for several times. The as-made Cu-TDPAT sample was immersed in methanol for 3 days to exchange the nonvolatile solvents, during which the extract was decanted and replaced with fresh methanol every 3 hours.

2. Powder X-ray diffraction experiment

Powder X-ray diffraction patterns of **1** were recorded on a 2D detector at X18A of NSLS in Brookhaven National Lab. All the measurements were operated at room temperature using 10keV X-ray right after the corresponding XAFS scans.

Figure S1. PXRD patterns of 1before and after activation, upon CO_2 loading and rehydration. Bottom trace: theoretical PXRD pattern

3. DFT computational methods.

The geometry optimization and vibrational modes of TDPAT was calculated using the Gaussian 03 program package¹ at the density functional theory (DFT) level with Beck's three parameter functional and Lee-Yang-Parr functional (B3LYP) method. 6-31G basis set was used. A summary of the calculated frequencies for the most Raman active vibrational modes is provided in Table S1. The vibrational mode anharmonicities were compensated using of a scaling factor of 0.96 in reporting their frequencies.

4. Reference Raman Spectra

Figure S2. Experimental (orange) and calculated (black) Raman spectra of H_6 TDPAT ligand. The calculated low frequency peaks were scaled up for better view.

Exp. Frequency	Calc.	Raman assignment
of H ₆ TDPAT	Frequency	
199.5	165	In plane Phenyl Ring tilt
207.1	184	Out plane Phenyl Ring tilt
269.1	277	δ Phenyl Ring
354.2	308	β(COOH)
396.5	330	v(COOH)
665.7	607	δ Phenyl Ring
756.9	690	In plane δ benzene ring
786.0	759	δ Phenl Ring + γ (N-H) _{amine}
971.5	931	Triazine ring breath
992.1	994	Phenyl ring breath
1232.0	1216	v(C-N) _{tirazine}
-	1258	$v(C-C)_{phenyl}+v(C-N)+\beta(C-H)+\beta(N-H)+\beta(O-H)$
1346.8	1363	ν (C-C) _{phenyl} + ν (C-N)+ β (C-H)+ β (N-H)+ β (O-H)
1428.5	1424	$\nu(C-C)_{phenyl} + \nu(C-N) + \beta(C-H) + \beta(N-H)$
-	1443	ν (C-C) _{phenyl} + ν (C-N)+ β (C-H)+ β (N-H)
-	1499	ν (C-C) _{phenyl} + ν (C-N)+ β (C-H)+ β (N-H)
1605.3	1592	v(C-C) _{phenyl}

Table S1. Experimental and calculated Raman active vibrational mode frequencies with descriptions of dominant components of the corresponding vibrational mode assignments for the H₆TDPAT ligand

1626.2 1608	v(C-OH)
-------------	---------

REFERENCES:

M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox; Gaussian Inc.: Wallingford, CT, 2010.