This journal is © The Royal Society of Chemistry 2014

Supporting Information

Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensionalgraphene-likenetworkswithhierarchicalporousstructure

Juhong Cheng, ^a Yunyong Li, ^a Xiangdong Huang, ^{*b} Qingquan Wang, ^b Ao Mei, ^b Pei Kang Shen, ^{*a}

a State Key Lab oratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, 135 Xingang Road, Guangzhou, 510275, PR China. E-mail : stssp k@mail.sysu .edu.cn; Fax: +86-20-84036736; Tel:+86-20-84036736 b Automotive Engineering Institute, Guangzhou Automobile Group Co., Ltd, Guangzhou, 510640, PR China. E-mail : huangxd@gaei.cn

Synthesis of 3D-GNs

For the preparation of nitrogen-free three-dimensional graphene-like networks (denoted as 3D GNs),

10 g pretreated macroporous acrylic type cation-exchange D113 resin was firstly impregnated with 100 mL 0.05 mol L⁻¹ of Co(NO₃)₂ solution, then the dried exchanged resin was added into 400 mL KOH/ethanol solution containing 15 g KOH for activation. Finally, the mixture was heated at 850 °C for 2 h in N₂ atmosphere with a heating rate of 2 °C min⁻¹. The 3D GNs was further treated with HCl solutions, washed by deionized water and dried at 120 °C for 5 h.

Synthesis of C-Pristine

10 g pretreated macroporous acrylic type cation-exchange D113 resin was directly heated at 850 °C for 2 h in N_2 atmosphere. After cooling down to room temperature, the C-Pristine was washed by deionized water and then dried at 120 °C for 5 h.

Synthesis of Pt/N-3D GNs, Pt/3D GNs and Pt/C-Pristine

In a typical synthesis, 3 ml (15 mgPt ml⁻¹) chloroplatinic acid was well mixed with ethylene glycol (EG, 50 ml) in an ultrasonic bath. Then, the N-3D GNs (or 3D GNs and C-Pristine, 55 mg) was added into the mixture. The pH of the mixture was adjusted to 10 by a dilute KOH/EG solution. The mixture

was microwave-heated in the form of 5 s-on/5 s-off for several times. The resulting black solid sample was acidified, filtered, washed and dried at 80 °C for 12 h in a vacuum oven.

Samples	Resistivity	under differe	ent pressure	$(\Omega^* \text{cm})$	
	1MPa	2MPa	4MPa	6MPa	8MPa
C-Pristine	5.21	2.70	1.536	1.113	0.880
N-3D GNs	0.394	0.255	0.180	0.148	0.126
3D GNs	0.373	0.239	0.169	0.136	0.114

Table S1 Resistivity under different pressure of various supporting materials

Table.S2 surface area and pore structure summary of N-3D GN, Pt/N-3D GNs, 3D GNs, and C-Pristine

,				
Samples	S _{BET}	$V_{0.98t}^{a}$	$V_{mi}{}^{b}$	V _{mea} ^c
	(m^{2}/g)	(cm ³ /g)	(cm^{3}/g)	(cm^{3}/g)
C-Pristine	137.8	1.999	0.0421	0.1578
3D GNs	729	0.5393	0.3003	0.2390
N-3D GNs	745	0.6018	0.2214	0.3804
Pt/N-3D GNs	511	0.4709	0.2027	0.2682

^a Single point desorption to total pore volume of pores at P /P₀= 0.98.

^b t-Plot micropore volume.

^c Mesopore and macropore volume obtained by subtracting V_{mi} from $V_{0.98t}$.

Fig.S1. Nitrogen adsorption/desorption isotherms (a) and DFT pore-size distribution curves (b) of N-3D GNs, Pt/N-3D GNs and Pt/N-3D GNs Calculated by C Only.

Fig.S3 (a, b, c) XPS core level spectra of Pt4f for Pt/N-3D GNs, Pt/C-Pristine and Pt/3D GNs, respictively; (d, e, f) XPS core level spectra of C1s for Pt/N-3D GNs, Pt/C-Pristine and Pt/3D GNs, respictively.

Table S3 Summary of position and assignments of C, Pt, and N components of the Pt/C-Pristine,Pt/3D GNs and Pt/N-3D GNs samples

	Pt/C-Pristine			Pt/3D GNs			Pt/N-3D GNs		
	Position	Attribution	Percentage	Position	Attribution	Percentage	Position	Attribution	Percentage
С	284.6	C-C	75.9	284.6	C-C	60.6	284.6	C-C	63.4
	286.5	C-O	10.7	286.5	C-O	18.3	285.6	C-N	10.4
	289.1	O=C-O	13.4	289.1	O=C-O	21.1	286.5	С-О	6.5
							289.1	O=C-O	19.7
Pt	71.6	$Pt^{0}(4f_{7/2})$	45.5	71.6	$Pt^{0}(4f_{7/2})$	55.2	71.6	$Pt^{0}(4f_{7/2})$	61.1
	74.8	$Pt^{0}(4f_{5/2})$		74.8	$Pt^{0}(4f_{5/2})$		74.8	$Pt^{0}(4f_{5/2})$	
	72.4	Pt ²⁺	54.5	72.4	Pt ²⁺	44.8	72.4	Pt ²⁺	38.9

This journal is © The Royal Society of Chemistry [year]

[journal], [year], [vol], 00–00 | 3

N N 398.5 Pyridine N 45.9 400.2 Pyrrole N 30.1 401.1 Graphtic 24 N
