Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Efficient Titanium Nitride/Titanium Oxide Composite Photoanodes for

Dye-Sensitized Solar Cells and Water Splitting

Chun–Ting Li,^a Sie–Rong Li,^b Ling–Yu Chang,^c Chuan–Pei Lee,^a Pei–Yu Chen,^a Shih–Sheng Sun,^{b,*} Jiang–Jen Lin,^{c,*} R. Vittal,^a and Kuo–Chuan Ho^{a,c,*}

Poly(oxyethylene)-segmented imide (POEM)

Scheme S1. Synthetic procedure for poly (oxyethylene)-segmented amide–imide (POE–amide–imide) (POEM)^{1, 2}.

Scheme S2. Molecular structure of CR147 dye^{3, 4}.

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S1. (a) Absorption spectra of the residual CR147 dye solutions after removing the dye-adsorbed films, and (b) a calibration curve of standard CR147 solution.

Figure S2. Brunauer–Emmett–Teller absorption/desorption curves of TiN and P25 nanoparticles.

Figure S3. Plots of normalized absorption versus time at 730 nm for the aqueous solutions of TiN and TiN/POEM. The inserted photographic images show both aqueous solutions at 0 h and at 6 h separately.

Figure S4. Cross-sectional FE-SEM images of (a) a TiN/TiO₂ composite film and (b) the P25 film.

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2014

Figure S5. Elemental mapping images of films of (a) TiN/TiO_2 -0.5h, (b) TiN/TiO_2 -1h, (c) TiN/TiO_2 -2h, and (d) TiN/TiO_2 -4h; the red dots represent the signals of oxygen element, while the green dots represent the signals of nitrogen element.

Figure S6. Logarithmic dark current density *vs.* applied voltage for the DSSCs with different photoanodes, measured at dark condition.

Figure S7. Photo-induced current density–voltage curves for the electrochemical water splitting devices with P25 photoanode, measured under (a) 100 mW cm⁻² (AM 1.5G) and (b) ultraviolet (UV) light illumination.

Figure S8. Photo-induced current density–voltage curves for the electrochemical water splitting devices with various TiN/TiO_2 composite photoanodes, measured under ultraviolet (UV) light illumination.

Reference

- R. X. Dong, S. Y. Shen, H. W. Chen, C. C. Wang, P. T. Shih, C. T. Liu, R. Vittal, J. J. Lin and K. C. Ho, J. Mater. Chem. A, 2013, 1, 8471.
- 2. L. Y. Chang, C. P. Lee, K. C. Huang, Y. C. Wang, M. H. Yeh, J. J. Lin and K. C. Ho, J. Mater. Chem., 2012, 22, 3185.
- 3. S. R. Li, C. P. Lee, H. T. Kuo, K. C. Ho and S. S. Sun, Chem. Eur. J., 2012, 18, 12085.
- 4. S. R. Li, C. P. Lee, C. W. Liao, W. L. Su, C. T. Li, K. C. Ho and S. S. Sun, Tetrahedron, 2014, 70, 6276.