Supporting Information

Carbon Dots Supported upon N-doped TiO₂ Nanorod Applied into

Sodium and Lithium Ion Batteries

Yingchang Yang,[†] Xiaobo Ji,^{†*} Mingjun Jing,[†] Hongshuai Hou,[†] Yirong Zhu,[†] Laibing

Fang,[†] Xuming Yang,[†] Qiyuan Chen[†] and Craig E. Banks[‡]*

[†]College of Chemistry and Chemical Engineering, Central South University,

Changsha 410083, China

[‡]Faculty of Science and Engineering, School of Science and the Environment,

Division of Chemistry and Environmental Science, Manchester Metropolitan

University, Chester Street, Manchester M1 5GD, UK.

*(xji@csu.edu.cn) * (c.banks@mmu.ac.uk)

Figure S1. XRD patterns of the raw materials (P25), the intermediate $Na_2Ti_3O_7$, $(NH_4)_2Ti_3O_7$ and the product N-TiO₂.

Figure S2. Elemental distribution of $N-TiO_2/C$ -dots probed by EDS-mapping: (a) SEM image, distribution of (b) C, (c) N, (d) Ti and (e) O.

Figure S3. Coulombic efficiency of lithium-ion batteries employing the N-TiO₂/C-dots anodes.

Figure S4. Galvanostatic charge–discharge profiles of the first, second and fifth cycles of sodiumion batteries employing the (a) N-TiO₂/C-dots composite and (b) pure N-TiO₂ anodes at 0.5 C.

Anodes	Rate (C)	Capacitive charge capacity q_{c} (mAh	Total capacity q_t	$\alpha / \alpha (0/)$
		\mathbf{g}^{-1})	$(mAh g^{-1})$	$q_{\rm c}/q_{\rm t}$ (%)
N-TiO ₂ /C-dots	2	143	260	55.0
	5	130	235	55.3
	10	117	208	56.2
	20	104	176	59.1
	50	93	145	64.1
	100	77	116	66.4
N-TiO ₂	2	125	217	57.6
	5	106	173	61.3
	10	91	145	62.8
	20	84	115	73.0
	50	55	72	76.0
	100	~36	36	~100

Table S1. Capacitive capacity of lithium-ion batteries employing the $N-TiO_2/C$ -dots compositeand pure $N-TiO_2$ anodes at various rates.

Table S2. Cycling performance and rate performance of the structured TiO_2 materials reported recently for lithium-ion battery anodes (1 C = 168 mA g⁻¹).

Compound	Crystalline	Capacity at low	Capacity at high	Compatibulity at 10 C	Ref.
		rate [mAh g ⁻¹]	rate [mAh g ⁻¹]	Capacity retention at 10 C	
TiO ₂ (B) nanotube	TiO ₂ (B)	220 at 0.3 C	134 at 10 C	~78.3% over 80 cycles	1
TiO ₂ /graphene	anatase	230 at 0.1 C	80 at 50 C	98% over 100 cycles	2
3D TiO ₂ /CNT	anatase	~270 at 0.5 C	~113 at 100 C	87% over 1000 cycles (20 C)	3
Nanoporous TiO ₂	anatase	~302 at 0.4 C	~46 at 119 C	~91.6% over 100 cycles	4
TiO ₂ -B/Anatase	TiO ₂ (B)/anatase	235 at 0.6 C	160 at 35.7 C	~97% over 100 cycles (35.7 C)	5
N-doped TiO ₂	anatase	182 at 0.5 C	~45 at 15 C	~97% over 100 cycles (0.5 C)	6
$N-TiO_2$ nanorods	anatase/TiO ₂ (B)	217 at 2 C	36 at 100 C	83.8% over 1000 cycles	This work
N-TiO ₂ nanorods/		260 at 2 C	116 at 100 C	91.6% over 1000 cycles	This work
C-dots	anatase/ $11O_2(B)$				

Compound	Crystalline	Capacity at low rate [mAh g ⁻¹]	Capacity at high rate [mAh g ⁻¹]	Capacity retention	Ref.
TiO ₂ nanotube	amorphous	120 at 0.3 C	/	/	7
TiO ₂ (H)	hollandite	85 at 0.25 C	/	/	8
TiO ₂ (B) nanotube	$TiO_2(B)$	87 at 0.24 C	33 at 2.4 C	${\sim}57\%$ over 100 cycles at 0.3 C	9
TiO ₂ /N-graphene	anatase	405 at 0.06 C	140 at 6 C	~74% over 100 cycles at 0.6 C	10
TiO ₂ nanorods/C	anatase	193 at 0.5 C	~104 at 20 C	90.7% over 50 cycles at 10 C	11
TiO ₂ NC	anatase	~190 at 0.3 C	~50 at 12 C	${\sim}79\%$ over 100 cycles at 0.3 C	12
TiO ₂ nanoparticles	anatase	~150 at 0.4 C	86 at 22 C	82% over 1000 cycles at 11 C	13
C-TiO ₂	anatase	155 at 0.12 C	82.7 at 12 C	${\sim}100\%$ over 50 cycles at 0.12 C	14
TiO ₂ spheres	anatase/TiO ₂ (B)	~173 at 0.5 C	105 at 5 C	~80% over 50 cycles at 1 C	15
$N-TiO_2$ nanorods	anatase/TiO ₂ (B)	218 at 0.5 C	40 at 20 C	78.1% over 300 cycles at 5 C	This work
$N-TiO_2$ nanorods/			121 + 20 C	02 (0/ 200 1 / 5 C	
C-dots	anatase/ $11O_2(B)$	258 at 0.5 C	131 at 20 C	95.0% over 500 cycles at 5 C	This work

Table S3. Cycling performance and rate performance of the structured TiO_2 materials reported recently for sodium-ion battery anodes (1 C = 168 mA g⁻¹).

References

(S1) Brutti, S.; Gentili, V.; Menard, H.; Scrosati, B.; Bruce, P. G. Adv. Energy Mater. 2012, 2, 322.

(S2) Xin, X.; Zhou, X.; Wu, J.; Yao, X.; Liu, Z. ACS Nano 2012, 6, 11035.

(S3) Chen, Z.; Yuan, Y.; Zhou, H.; Wang, X.; Gan, Z.; Wang, F.; Lu, Y. *Adv. Mater.* **2014**, *26*, 339.

(S4) Shin, J.-Y.; Samuelis, D.; Maier, J. Adv. Funct. Mater. 2011, 21, 3464.

(S5) Chen, C.; Hu, X.; Jiang, Y.; Yang, Z.; Hu, P.; Huang, Y. Chem. Eur. J. 2014, 20, 1383.

(S6) Zhang, Y.; Du, F.; Yan, X.; Jin, Y.; Zhu, K.; Wang, X.; Li, H.; Chen, G.; Wang, C.; Wei, Y. ACS Appl. Mater. Interfaces **2014**, *6*, 4458.

(S7) Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560.

(S8) Perez-Flores, J. C.; Baehtz, C.; Kuhn, A.; Garcia-Alvarado, F. *J. Mater. Chem. A* **2014**, *2*, 1825.

(S9) Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. *RSC Adv.* **2013**, *3*, 12593.

(S10) Cha, H. A.; Jeong, H. M.; Kang, J. K. J. Mater. Chem. A 2014, 2, 5182.

(S11) Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. *Nano Lett.* **2014**, *14*, 416.

(S12) Xu, Y.; Memarzadeh Lotfabad, E.; Wang, H.; Farbod, B.; Xu, Z.; Kohandehghan, A.; Mitlin, D. *Chem. Commun.* **2013**, *49*, 8973.

(S13) Wu, L.; Buchholz, D.; Bresser, D.; Gomes Chagas, L.; Passerini, S. J. Power Sources **2014**, 251, 379.

(S14) Oh, S.-M.; Hwang, J.-Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y.-K. *ACS Appl. Mater. Interfaces* **2014**, DOI: 10.1021/am501772a.

(S15) Yan, Z.; Liu, L.; Tan, J.; Zhou, Q.; Huang, Z.; Xia, D.; Shu, H.; Yang, X.; Wang, X. *J. Power Sources* **2014**, DOI: 10.1016/j.jpowsour.2014.06.150.