Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014 ## **Supporting information** ## High voltage in hole conductor free organo metal halide perovskite solar cells Alex Dymshits, Amit Rotem, Lioz Etgar* The Hebrew University of Jerusalem, Institute of Chemistry, Casali Center for Applied Chemistry, Jerusalem 91904, Israel * <u>lioz.etgar@mail.huji.ac.il</u> Figure 1S: Absorption spectra of the four different configurations. **Figure 2S:** HR-SEM cross section of the (a) MAPbBr₃/TiO₂ HTM free cell and (d) MAPbI₃/TiO₂ HTM free cell. ## List of abbreviations: SPV - surface photovoltage SPS – surface photovoltage spectroscopy CPD – contact potential difference WF - work function Vs_d- surface potential in the dark, Vs₁- surface potential in light η – Power conversion efficiency V_{oc} – open-circuit voltage J_{sc} - short-circuit photocurrent density HTM – hole transport material t_{on} – time the light is switched on toff time the light is switched off τ_r - recombination lifetime **Figure 3S:** Schematic band diagram of a parallel plate capacitor formed from metal and p-type semiconductor connected through a DC bias such that the capacitor is discharged. This figure represents the tip and the semiconductor arrangement in the SPV technique. E_l - vacuum level E_c – conduction band E_{ν} – valence band $E_{f,s}$ – Fermi level of semiconductor $E_{f,m}$ – Fermi level of metal W_s – Work function of semiconductor W_m – Work function of metal eV_{CPD} – Contact potential difference