Supporting Information

Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anode

Xin Gu,^a Jie Yue,^b Liang Chen,^b Shuo Liu,^b Huayun Xu,^b Jian Yang,^{b,*} Yitai Qian,^{b,c,*},Xuebo

Zhao,^{a,*}

^{*a*} Institute of Unconventional Hydrocarbon and New Energy Sources, China University of Petroleum (East China), Qingdao 266580, P. R. China. E-mail:

zhaoxuebo@upc.edu.cn

^b Key Laboratory of Colloid and Interface Chemistry, Ministry of Education. School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P.R. China. E-mail: yangjian@sdu.edu.cn

^{*c*} Hefei National Laboratory for Physical Science at Microscale. Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China. E-mail: ytqian@ustc.edu.cn

Fig. S1 TEM images of (a) MnOOH/PPy nanorods and (b) MnO/N-C nanorods. (c) HRTEM image of MnO/N-C nanorods highlighted by the yellow square in (b).

Fig. S2 TEM images of (a) MnO and (b) MnO/C nanorods. (c) HRTEM image of MnO/C nanorods highlighted by the yellow square in (b).

Fig. S3 TG curves of (a) MnO and (b) MnO/N-C, MnO/C at a heating rate of 10 °C min⁻¹ in air.

Fig. S4 XRD patterns of the products obtained by the calcination of (a) MnO/N-C and (b) MnO/C at 800 $^{\circ}$ C in air for 2 h.

Fig. S5 TEM image of the electrode after rate capability test.