[Supporting Information]

Enhanced recognition of nitrogen-containing organic compound by adjusting acidity of porous organic frameworks base (JUC-Z2)

Shixian Xu,¹ Soumyajit Roy,³ Teng Ben,^{2*}Cuiying Pei,¹ and Shilun Qiu^{1*}

¹ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, China; ² Department of Chemistry, Jilin University, Changchun, China. ³ *EFAML, Materials Science Center, Department of Chemical Sciences, IISER-Kolkata, Mohanpur 741252, India*

E-mail: sqiu@jlu.edu.cn; tben@jlu.edu.cn

Table of Contents

1. Determination of degree of sulfonation	S3
2. Binding of host solid JUC-Z2-SO ₃ H with ethylenediamine	
guest in different solvent	S4
3. Binding of host solid JUC-Z2-SO₃H with n-butylamine	
guest in different solvent	S6
4. Binding of host solid JUC-Z2-SO ₃ H with dipropylamine	
guest in different solvent	S7
5. Binding of host solid JUC-Z2-SO ₃ H with tributylamine	
guest in different solvent	S9
6. Binding of host solid JUC-Z2-SO ₃ H with aniline	
guest in different solvent	S10
7. Binding of host solid JUC-Z2-SO ₃ H with N,N-Dimethylformamide	
guest in different solvent	S12
8. Binding of host solid JUC-Z2-SO ₃ H with N- methyl pyrrolidone	
guests in different solvent	S13
9. Binding of host solid JUC-Z2 with ethylenediamine	
guest in different solvent.	S15
10.Binding of host solid JUC-Z2 with n-butylamine guest in	
different solvent	S16
11.Binding of host solid JUC-Z2 with dipropylamine guest in	
different solvent	S18
12. Binding of host solid JUC-Z2 with tributylamine guest in	
different solvent	S19
13. Binding of host solid JUC-Z2 with aniline guest in different solvent	S21
14. Binding of host solid JUC-Z2 with N, N-Dimethylformamide guest	
in different solvent	
S22	
15. Binding of host solid JUC-Z2 with N- methyl pyrrolidone guest in	
different solvent	S24

1. Determination of degree of sulfonation

(1) Preparation and calibration of sodium hydroxide solution:

COOH + M	NaOH = COO	ЭNa + H ₂ O ЭК	
$C_{\text{NaOH}} = \frac{m_{\text{KHC}_8H_4O_4} \times 100}{M_{\text{KHC}_8H_4O_4} \times V_{\text{Nad}}}$	$\frac{0}{OH} \qquad (M_{KHC_8H_4O_4} =$	204.2 <i>gmol</i> ⁻¹)	(1)
Table S1. Calibration of sodium hydroxide solution Indicator: phenolphthalein			
	1	2	3
$m_{{\it KHC_8H_4O_4}}$ / g	2.9912	3.1448	2.9888

V _{NaOH} / mL	14.43	15.17	14.40
$C_{\scriptscriptstyle NaOH}$ / mol L ⁻¹	1.0151	1.0158	1.0164
\overline{C}_{NaOH} / mol L-1		1.0158	

(2) Preparation and calibration of hydrochloric acid solution:

$$C_{HCl} = \frac{C_{NaOH} \times V_{NaOH}}{V_{HCl}}$$
(2)

Table S2. Calibration of hydrochloric acid solution

	1	2	3
V_{NaOH} / mL	15.00	15.00	15.00
V_{HCl} / mL	15.20	15.22	15.21
C_{HCl} / mol L ⁻¹	1.0024	1.0011	1.0018
\overline{C}_{HCl} / mol L ⁻¹		1.0018	

(3) Determination of degree of sulfonation:

Procedure:

- Polymer was grinded into powder. 0.1 g of JUC-Z2-SO₃H was taken in a 100 mL flask followed by addition of 20.00 mL sodium hydroxide standard solution.
- 2) Mixing for 72 h to attain uniformity.
- 3) Using phenolphthalein as indicator, the determination of degree of sulfonation by acid-base titration.

$$H = \frac{C_1 V_1 - C_2 V_2}{m}$$
(3)

H——degree of sulfonation (mmol/g)

- m——the quality of the polymer (g)
- V₁——volume of sodium hydroxide standard solution (0.02 L)

C₂——the concentration of hydrochloric acid standard solution (mol/L)

V₂——volume of Hydrochloric acid standard solution (L)

	1	2	3
<i>m</i> / g	0.1004	0.1010	0.1008
$V_{\scriptscriptstyle NaOH}$ / mL	20.00	20.00	20.00
V_{HCl} / mL	19.95	19.98	19.96
H / mmol g ⁻¹	3.39	3.08	3.27
\overline{H} / mmol g ⁻¹		3.21	

Table S3. Determination of degree of sulfonation

2. Binding of host solid JUC-Z2-SO₃H with ethylenediamine guest in different solvent.

Figure S1. Linear curve of GC at various ethylenediamine concentration in carbon tetrachloride solvent (CCl₄) (A), Binding of host solid JUC-Z2-SO₃H with ethylenediamine guest (B).

Figure S2. Linear curve of GC at various ethylenediamine concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with ethylenediamine guest (B).

Figure S3. Linear curve of GC at various ethylenediamine concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with ethylenediamine guest (B).

3. Binding of host solid JUC-Z2-SO₃H with n-butylamine guest in different solvent.

Figure S4. Linear curve of GC at various n-butylamine concentration in CCl_4 (A), Binding of host solid JUC-Z2-SO₃H with n-butylamine guest (B).

Figure S5. Linear curve of GC at various n-butylamine concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with n-butylamine guest (B).

Figure S6. Linear curve of GC at various n-butylamine concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with n-butylamine guest (B).

4. Binding of host solid JUC-Z2-SO₃H with dipropylamine guest in different solvent.

Figure S7. Linear curve of GC at various dipropylamine concentration in CCl_4 (A), Binding of host solid JUC-Z2-SO₃H with dipropylamine guest (B).

Figure S8. Linear curve of GC at various dipropylamine concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with dipropylamine guest (B).

Figure S9. Linear curve of GC at various dipropylamine concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with dipropylamine guest (B).

5. Binding of host solid JUC-Z2-SO₃H with tributylamine guest in different solvent.

Figure S10. Linear curve of GC at various tributylamine concentration in CCl_4 (A), Binding of host solid JUC-Z2-SO₃H with tributylamine guest (B).

Figure S11. Linear curve of GC at various tributylamine concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with tributylamine guest (B).

Figure S12. Linear curve of GC at various tributylamine concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with tributylamine guest (B).

6. Binding of host solid JUC-Z2-SO₃H with aniline guest in different solvent.

Figure S13. Linear curve of GC at various aniline concentration in CCl_4 (A), Binding of host solid JUC-Z2-SO₃H with aniline guest (B).

Figure S14. Linear curve of GC at various aniline concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with aniline guest (B).

Figure S15. Linear curve of GC at various aniline concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with aniline guest (B).

7. Binding of host solid JUC-Z2-SO₃H with N,N-Dimethylformamide guest in different solvent.

Figure S16. Linear curve of GC at various N,N-Dimethylformamide concentration in CCl₄ (A), Binding of host solid JUC-Z2-SO₃H with N,N-Dimethylformamide guest (B).

Figure S17. Linear curve of GC at various N,N-Dimethylformamide concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with N, N-Dimethylform- amide guest (B).

Figure S18. Linear curve of GC at various N,N-Dimethylformamide concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with N,N-Dimethylform-amide guest (B).

8. Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest in different solvent.

Figure S19. Linear curve of GC at various N- methyl pyrrolidone concentration in CCl₄ (A), Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest (B).

Figure S20. Linear curve of GC at various N- methyl pyrrolidone concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest (B).

FigureS21. Linear curve of GC at various N- methyl pyrrolidone concentration in methanol (A), Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest (B).

9. Binding of host solid JUC-Z2 with ethylenediamine guest in different solvent.

Figure S22. Linear curve of GC at various ethylenediamine concentration in $CCl_4(A)$, Binding of host solid JUC-Z2 with ethylenediamine Guest (B).

Figure S23. Linear curve of GC at various ethylenediamine concentration in ethanol (A), Binding of host solid JUC-Z2 with ethylenediamine Guest (B).

Figure S24. Linear curve of GC at various ethylenediamine concentration in methanol (A), Binding of host solid JUC-Z2 with ethylenediamine Guest (B).

10. Binding of host solid JUC-Z2 with n-butylamine guest in different solvent.

Figure S25. Linear curve of GC at various n-butylamine concentration in CCl₄(A), Binding of host solid JUC-Z2 with n-butylamine guest (B).

Figure S26. Linear curve of GC at various n-butylamine concentration in ethanol (A), Binding of host solid JUC-Z2 with n-butylamine guest (B).

Figure S27. Linear curve of GC at various n-butylamine concentration in methanol (A), Binding of host solid JUC-Z2 with n-butylamine guest (B).

11. Binding of host solid JUC-Z2 with dipropylamine guest in different solvent.

Figure S28. Linear curve of GC at various dipropylamine concentration in CCl_4 (A), Binding of host solid JUC-Z2 with dipropylamine guest (B).

Figure S29. Linear curve of GC at n various dipropylamine concentration in ethanol (A), Binding of host solid JUC-Z2 with dipropylamine guest (B).

Figure S30. Linear curve of GC at various dipropylamine concentration in methanol (A), Binding of host solid JUC-Z2 with dipropylamine guest (B).

12. Binding of host solid JUC-Z2 with tributylamine guest in different solvent.

Figure S31. Linear curve of GC at various tributylamine concentration in $CCl_4(A)$, Binding of host solid JUC-Z2 with tributylamine guest (B).

Figure S32. Linear curve of GC at various tributylamine concentration in ethanol (left) Binding of host solid JUC-Z2 with tributylamine guest (right).

Figure S33. Linear curve of GC at various tributylamine concentration in methanol (A), Binding of host solid JUC-Z2 with tributylamine guest (B).

Figure S34. Linear curve of GC at various aniline concentration in CCl_4 (A), Binding of host solid JUC-Z2 with aniline guest (B).

Figure S35. Linear curve of GC at various aniline concentration in ethanol (A), Binding of host solid JUC-Z2 with aniline guest (B).

Figure S36. Linear curve of GC at various aniline concentration in methanol (A), Binding of host solid JUC-Z2 with aniline guest (B).

14. Binding of host solid JUC-Z2 with N, N-Dimethylformamide guest in different solvent.

Figure S37. Linear curve of GC at various N,N-Dimethylformamide concentration in CCl₄ (A), Binding of host solid JUC-Z2 with N,N-Dimethylformamide guest (B).

Figure S38. Linear curve of GC at various N, N-Dimethylformamide concentration in ethanol (A), Binding of host solid JUC-Z2 with N, N-Dimethylformamide guest (B).

Figure S39. Linear curve of GC at various N, N-Dimethylformamide concentration in methanol (A), Binding of host solid JUC-Z2 with N, N-Dimethylformamide guest (B).

15. Binding of host solid JUC-Z2 with N- methyl pyrrolidone guest in different solvent.

Figure S40. Linear curve of GC at various N- methyl pyrrolidone concentration in CCl₄ (A), Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest (B).

Figure S41. Linear curve of GC at various N- methyl pyrrolidone concentration in ethanol (A), Binding of host solid JUC-Z2-SO₃H with N- methyl pyrrolidone guest (B).

Figure S42. Linear curve of GC at various N- methyl pyrrolidone concentration in methanol (A), Binding of host solid JUC-Z2 with N- methyl pyrrolidone guest (B).