Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI):

Zn_xCd_{1-x}S/Bacterial Cellulose Bionanocomposite Foams with

Hierarchical Architecture and Enhanced Visible-light Photocatalytic

Hydrogen Production Activity

Peipei Wang,^a Zhibin Geng,^a Jianxiong Gao,^a Ruifei Xuan,^b Ping Liu,^c Yun Wang,^a Keke Huang,^a Yizao Wan^c and Yan Xu^{*a}

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China. ^bCollege of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China. ^cSchool of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China

To whom the correspondence should be addressed:

Yan Xu PhD The State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China yanxu@jlu.edu.cn

Fig. S1. SEM images: (a) BC showing the hierarchical architecture of hydrogen-bonded cellulose nanofibers. (b) ZnO/BC showing the hierarchical architecture based on highly networked nanosheets.

Fig. S2. XRD patterns of BC and ZnO/BC.

Samples	$\frac{\text{BET}}{(\text{m}^2\text{g}^{-1})}$	Mean pore size (nm)	Pore volume $(cm^3 g^{-1})$	Cd/Zn ICP (molar ration)	H_2 evolution rate (µmol h ⁻¹ g ⁻¹)
Zn _{0.88} Cd _{0.12} S/BC	52	15.4	0.20	0.13	280
$Zn_{0.18}Cd_{0.82}S/BC$	72	14.4	0.27	4.64	405
Zn _{0.14} Cd _{0.86} S/BC	93	14.3	0.34	5.91	680
Zn _{0.09} Cd _{0.91} S/BC	101	14.1	0.36	9.65	1450
Zn _{0.06} Cd _{0.94} S/BC	87	14.5	0.26	12.35	591
Zn _{0.03} Cd _{0.97} S/BC	47	16.4	0.14	29.64	82
Zn _{0.06} Cd _{0.94} S/BC	46	16.2	0.19	14.25	40
Powder CdS	56	21.9	0.30	-	96
ZnO/BC	92	14.2	0.33	-	0
BC	166	-	-	-	0

Table S1. Collection of the BET surface area, mean pore size, pore volume, Cd/Zn molar ratio and H_2 evolution rate.

Fig. S3. Textural properties of BC: (a) N_2 adsorption and desorption isotherm. (b) BJH pore size distribution. (c) Hg intrusion porosimetry measurement. (d) Micrometer pore size distribution.

Fig. S4. Tracking the structural transformation from ZnO/BC to $Zn_{0.09}Cd_{0.91}S/BC$ by SEM after 30 min, 1 h, 4 h and 6 h of the ion exchange/seeded growth process under solvothermal conditions in ethanol at 120 °C.

Fig. S5. Tracking the structural transformation from ZnO/BC to $Zn_{0.09}Cd_{0.91}S/BC$ by XRD after 30 min, 1 h, 4 h and 6 h of the ion exchange/seeded growth process under solvothermal conditions in ethanol at 120 °C.

Fig. S6. Characterizing the products obtained from solvothermal reaction of a stoichiometric amount Zn/BC, thiourea and ethanol: (a) SEM and (b) XRD.

Fig. S7. EDS analysis: (a) $Zn_{0.88}Cd_{0.12}S/BC$. (b) $Zn_{0.18}Cd_{0.82}S/BC$. (c) $Zn_{0.14}Cd_{0.86}S/BC$. (d)

Fig. S8. Characterizing the products obtained from solvothermal reactions involving different precursor scaffolds: (a_1, a_2) SEM and XRD of the product using BC as precursor scaffold, showing unidentified nanoparticles spread around BC. (b_1, b_2) SEM and XRD of the precursor scaffold prepared by refluxing BC and Zn(AC)₂·2H₂O in ethanol at 80 °C for 3 h, showing weak diffractions of wurtzite ZnO. (c_1, c_2) SEM and XRD of the product obtained by solvothermal reaction involving the precursor scaffold (b), showing wurtzite CdS.

Fig. S9. Characterization of $Zn_{0.06}Cd_{0.94}S/BC$: (a) SEM. (b) high magnification TEM. (c) HRTEM. (d) XRD.

Table S2	. Band	gaps	of Zn,	$_{c}Cd_{1}$	_x S/BC	
----------	--------	------	--------	--------------	-------------------	--

Samples	UV-vis adsorption edge (nm)	Band gap (eV)
ZnO/BC	379	3.21
$Zn_{0.88}Cd_{0.12}S/BC$	466	2.66
$Zn_{0.18}Cd_{0.84}S/BC$	501	2.47
Zn _{0.14} Cd ₈₆ S/BC	526	2.36
Zn _{0.09} Cd _{0.91} S/BC	531	2.33
Zn _{0.06} Cd _{0.94} S/BC	542	2.28
Zn _{0.03} Cd _{0.97} S/BC	550	2.25
$Zn_{0.06}Cd_{0.94}S/BC$	604	2.05

Fig. S10. UV-vis spectrum of *Zn*_{0.06}*Cd*_{0.94}*S*/*BC*.

Fig. S11. XPS analysis of $Zn_{0.09}Cd_{0.91}S/BC$: (a) survey spectrum. (b) Deconvoluted XPS peak of Cd. (c) Deconvoluted XPS peak of S. (d) Deconvoluted XPS peak of Zn.

Fig. S12. Characterizing the commercial CdS powder: SEM and XRD pattern.